
NASALI'M-1999-208788

GT-CATS: Tracking Operator Activities in
- -

Complex Systems
Todd J. Callantine
San Jose State University Foundation
San Jose, California

Christine M. Mitchell
Georgia Institute of Technology
Atlanta, Georgia

Everett A. Palmer
Ames Research Center, Moflett Field, California

June 1999

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this important
role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA’s scientific and technical information.
The NASA STI Program Office provides access
to the NASA STI Database, the largest
collection of aeronautical and space science STI
in the world. The Program Office is also
NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are
published by NASA in the NASA STI Report
Series, which includes the following report
types:

TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to
be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored
or co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, prajects, and missions,
often concerned with subjects having
substantial public interest.

TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material
pertinent to NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results ... even providing videos.

For more information about the NASA STI
Program Office, see the following:

Access the NASA STI Program Home
Page at http://www.sti.nasa.gov

E-mail your question via the Internet to
help@sti.nasa.gov

Fax your question to the NASA STI
Help Desk at (301) 621-0134

Telephone the NASA STI Help Desk at
(301) 621-0390

Write to:
NASA STI Help Desk
NASA Center for Aerospace

Information
7121 Standard Drive
Hanover, MD 2 1076- 1320

GT-CATS: Tracking Operator Activities in
Complex Systems

L

Todd .I Callantine
San Jose State University Foundation
San Jose, California

Christine M . Mitchell
Georgia Institute of Technology
Atlanta, Georgia

Everett A. Palmer
Ames Research Center, Moflett Field, California

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

June 1999

Acknowledgments

This report describes the most recent development in a research project begun in the early 1980s. The operator
function model (ref. 1) grew out of a need to describe operator activities in the control of complex dynamic
systems. The description needed to be human-readable by the personnel being modeled, researchers, and
software developers. Hence, the ‘bubble’ syntax replaced the traditional prose of task analysis. Moreover, the
dynamics of finite state automata captured much of the behavior change, initiation, and termination in
operational activities in camed out in complex systems.

Used as both a notation for description and specification for the design of model-based interfaces, the operator
function model turned out to be both effective and useful. As computer interface technology became both more
available and cheaper, the need to specify the semantics of operator workstations became more critical.

At the urging of Everett Palmer the project expanded to attempt to extend the operator function model into
software, a kind of ‘living tasks analysis.’ Both conceptually and computationally this turned out to be a chal-
lenging but rewarding task.

I

.)

As we were addressing this challenge, DARPA proposed the exploration of a pilot’s associate. In many ways our
research and its methods paralleled the DARPA work (refs. 2 and 3). Both included a hierarchic description of
operator/pilot intentions that were ‘expected’ top-down; and both attempted to interpret actual operator/pilot
actions bottom-up by considering them in light of expectations. Our research had the advantage of being con-
ducted in the context of safety-critical control systems that were much more benign than air combat. This
allowed us to incrementally design, implement, and evaluate various concepts.

Thanks in large part to the combined work of Kenny Rubin and Patty Jones the initial design, concept and
implementation of OFMspert, or operator function model expert system, occurred in 1986 (ref. 4). For a
simulation of a NASA satellite ground control system, OFMspert was applied to the task of understanding
operator actions in controlling the system (Jones and Mitchell, 19xx). We were delighted to find that for many
measures OFMspert was quite good at explaining operator actions. For some measures, including operator
browsing through the interface display pages, however, there was room for improvement.

Our next application was to the tasks of piloting a B-727 (ref. 5). As often happens with research, the outcome
was not as successful as anticipated. OFMspert, depending on a operator model represented as a finite-state
machine, did not represent well the primarily continuous activities of navigation in a ‘non-glass’ cockpit.

Concurrently, OFMspert was extended and enhanced as both an aid (ref. 6) and a tutor (ref. 7). Application and
evaluation in satellite ground control showed that OFMspert provided a useful knowledge structures for intelli-
gent aiding and training.

GT-CATS, the research described in this report, built on and extended various flavors of previous OFMspert
applications and used our accumulated wisdom. For researchers at Georgia Tech, past and current, and at NASA
Ames, GT-CATS represents a major milestone. GT-CATS runs and empirical data show it to be reasonably
successful. It also offers many productive avenues for follow-on research. The on-going support and assistance
of many people is gratefully acknowledged. They include T. Govindaraj, Richard Robison, Alan Chappell, Jim
Williams, and Delta Airlines Training and Flight Operations Departments. As all modelers know, success or
failure depends in large part on the quality of the model. GT-CATS was greatly facilitated by the in ut and fly-

Captain Jim Irving of United Airlines.

,

ing expertise of many pilots including Captains Arnie Kraby, Alan Price, and Bill Jones of Delta Air P mes, and
c

Available from:

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076-1320

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Table of Contents

.

c

.

.

Summary .. 1
1 . Introduction .. 1
2 . Intent Inferencing ... 5
Introduction .. 5
Motivations for intent inferencing and related research ... 5

Intelligent Decision Support Systems ... 5

Human-centered automation .. : .. 6
Adaptive aiding ... 5

Operator’s associate .. 6
Intelligent information displays ... 6

Operator models for intent inferencing ... 7

Intent inferencing and related research .. 9
OFMspert .. 9
ALLY .. 10
GT-MOCA .. 1 1
GT-VITA .. 1 1
OPAL .. 1 1
USAFLockheed Pilot’s Associate .. 1 1
Task Support SystendCockpit Task Management System ... 12
Cockpit Assistant System and Intelligent Flight Path Monitor .. 12

Intelligent tutoring systems .. 7

Operator Function Model .. 8
Plan-Goal Graph ... 8

Summary .. 13
3 . Modes In Complex Systems .. 15
Introduction .. 15
The Boeing 757/767 glass cockpit ... 15

Boeing 757/767 automation .. 18
757/767 Autopilot ... 18
757/767 modes .. 19
Automation use ... 22

Classes of modes ... 25

Control modes ... 2 6
Levels of automation ... 26

Mode structure .. 28
Mode transitions .. 28
Base-modes and macro-modes .. 29

Cognitive factors impacting mode usage ... 29
Mode usage tasks .. 3 0

Strategic factors ... 31
Attentional dynamics ... 31
Combined effects: bounded rationality .. 3 3

Summary of 757/767 automation operation .. 25

Formarldata-entry modes ... 25

Formarldata-entry modes for control modes .. 2 8

Knowledge factors ... 3 0

Summary .. 33

...
111

4 . A Methodology and Architecture for Activity Tracking .. 35
Introduction .. 35

Overview of the GT-CATS methodology ... 35
Components of the GT-CATS methodology ... 36

Representing the state of the controlled system: The state space ... 42
Representing environmental constraints: The Limiting Operating Envelope 4 3

The GT-CATS action manager .. 48
Summary of the GT-CATS methodology .. 50

DUO construction procedure .. 58

The state space .. 6 1

Context specifiers .. 62

GT-CATS compared with other intent inferencing systems .. 66

Representing the operator’s task: The OFM-ACM ... 37

The Dynamically Updated OFM-ACM .. 44 .

The GT-CATS architecture ... 54
The OFM-ACM in the GT-CATS architecture ... 55
The Dynamically Updated OFM-ACM .. 58

DUO update procedure .. 59

The Limiting Operating Envelope ... 61

The action manager ... 64
Control of processing in GT-CATS ... 65

Summary .. 67
5 . GT-CATS Implemented for the Glass Cockpit ... 69
Introduction 69
OFM-ACM for the B757/767 .. 69

Structure of the OM-ACM ... 69
State space ... 77
Limiting Operating Envelope .. 78

..

Context Specifiers ... 80
Context Specifiers activated using aircraft state variables .. 80
Context Specifiers activated using autoflight system state variables ... 81
Context Specifiers activated to summarize FMS state .. 8 3
Context Specifiers activated to summarize phase of flight .. 84

Dynamically Updated OFM-ACM (DUO) ... 84
Action manager ... 84

Examples of GT-CATS operation ... 84
Summary .. 95
6 . Empirical Evaluation 97
Introduction 97
Background .. 97
Evaluation of GT-CATS .. 98

GT-EFIRT ... 98
Subjects ... 99
Experimental procedure .. loo
Experimental scenarios .. loo

Scenario 2: KATL-KBHM1 ... 103

Scenario 4: KCLT-KATL1 .. 105

Scenario 1: KATL-KBHM ... 101

Scenario 3: KCLT-KATL .. 105

iv

Scenario 5: KLAX-KSFO .. 107
Scenario 6: KBHM-KATL ... 109

GT-CATS ATC facility .. 110
Data collection .. 110
Experimental configuration ... 1 1 1
Performance measures ... 112

Summary .. 114
7 . Results .. 115
Introduction .. 115
Overall results ... 115

Predictive capabilities of GT-CATS ... 116
Pilot ‘errors’ ... 118
Enhancements/adjustments to GT-CATS .. 118

Access to the next subphase ... 118
OFM-ACM enhancements to explain heading adjustments ... 118
OFM-ACM adjustments to explain altitude settings .. 120

Results of a post-experimental questionnaire ... 121
Pilot mode usage differences ... 123
Mode usage differences across scenarios ... 123

Other enhancements .. 121

Micro-analysis .. 124
Summary .. 124
8 . Conclusions and Further Research ... 125
Conclusions .. 125
Enhancements and Suggestions for Further Research .. 126
References .. 128

.

V

.

Summary

Human operators of complex dynamic sys-
tems can experience difficulties supervising
advanced control automation. One remedy is
to develop intelligent aiding systems that can
provide operators with context-sensitive advice
and reminders. The research reported herein
proposes, implements, and evaluates a meth-
odology for activity tracking, a form of intent
inferencing that can supply the knowledge
required for an intelligent aid by constructing
and maintaining a representation of operator
activities in real time. The methodology was
implemented in the Georgia Tech Crew Activ-
ity Tracking System (GT-CATS), which pre-
dicts and interprets the actions performed by
Boeing 7571767 pilots navigating using
autopilot flight modes. This report first
describes research on intent inferencing and
complex modes of automation. It then pro-
vides a detailed description of the GT-CATS
methodology, knowledge structures, and proc-
essing scheme. The results of an experimental
evaluation using airline pilots are given. The
results show that GT-CATS was effective in
predicting and interpreting pilot actions in real
time.

1. Introduction
Human operators increasingly use automation
to control complex dynamic systems. 1 Such
operators function as supervisory controllers,
monitoring and intermittently programming
the automation to control the task environ-
ment. As computer technology has become
more powerful, more aspects of the operator’s
former control task have become automated,
and the automation itself has become more
complex. The proliferation of automation has
changed the human supervisory controller’s
task. Humans now make less frequent-albeit
more complicated-inputs to the automation,

1 The term “complex system” is used herein to refer to
engineered systems controlled by well-trained operators
that are assumed to be well-motivated, and for which
system state data are available via computer.

and must monitor more complex information
about both the controlled process and the
operation of the automation (refs. 8-9).
This transformation has placed new demands
on the human operator. The operator must
understand how automation is to be used in
light of the current operating situation; the
operator must be able to trade off operational
objectives as necessary to use the automation
effectively; and, the operator must be able to
manage the monitoring and mental book-
keeping required to assess the situation cor-
rectly and “stay ahead” of the automation
(ref. IO). If the operator experiences difficul-
ties meeting one or more of these
demands-in times of high workload or
abnormal operation, for example-he or she
becomes susceptible to errors that can com-
promise system safety (ref. 11)
Breakdowns in human-machine interaction
have motivated a broad spectrum of research
that attacks the problem from three interre-
lated angles: improving the design of the
human-machine interface, improving operator
training, and devising ways to aid the operator.
For example, some research seeks to present
information in a way that emphasizes impor-
tant features of the system crucial to operator
understanding (ref. 12), or to dynamically
tailor displayed information to the situation at
hand (refs. 13 and 14). Other research
addresses improved training for operators of
complex systems (refs. 7 and 15). Still another
approach is adaptive aiding (refs. 16-18).
Adaptive aiding combines dynamic task allo-
cation, to keep operators “in the loop,” with
error-resistant, error-tolerant systems to keep
operators from making errors wherever possi-
ble, and to detect and alleviate the effects of
errors that do occur (refs. 8 and 19).
One way to foster error tolerance and support
dynamic task allocation is to develop intelli-
gent operator aiding systems that monitor the
human-machine interaction and supply timely
advice and reminders to the operator (refs. 4
and 20). This research addresses a facet of
such systems-referred to as operator’s asso-
ciates (ref. 4), or intelligent operator assistants
(ref. 21). The USAF/ Lockheed Pilot’s Associ-

1

ate is an example of the operator’s associate
concept designed for fighter pilots (refs. 2, 22
and 23). The Pilot’s Associate and other
operator’s associate systems construct and
maintain a dynamic, context-specific repre-
sentation of what the operator is doing-and
will be doing-and why. Such a representation
provides the knowledge required for the asso-
ciate to monitor the human operator to detect
errors and provide assistance.
Developing reliable dynamic representations
of operator activities to support human-
machine interaction is the focus of intent
inferencing (refs. 4 and 18). Activity trucking
is a type of intent inferencing explored in‘this
research, so called because it focuses not on
the psychological aspects of human intent, but
on the context-specific manifestations of
operator intentions as overt control activities.
By tracking operator activities-like one
human monitoring and interpreting another
human’s behavior-an operator’s associate
can maintain a dynamic representation of
operator activities which can be used to sup-
port human-machine interaction.
As proposed in this research, activity tracking
has four elements. The first element is the
capability to hypothesize how the operator will
perform the next set of activities in the current
operational setting. The second is the capabil-
ity to confirm the hypotheses based on actual
operator actions. The third is the capability to
interpret unexpected operator actions that
were not hypothesized, to determine whether
the unexpected operator actions are errors, or
part of an alternative, but valid, method for
using the automation. Finally, activity tracking
includes the capability to identify missed or
late operator actions so that possible errors of
omission can be detected.
This research proposes, implements, and
evaluates a methodology for activity tracking.
The methodology embodies a theory that, first,
establishes conditions on the types of knowl-
edge that must be available in a domain to
support activity tracking. Specifically, the
methodology applies to engineered systems in
which information about the state of the sys-

tem, goals of the operator, and standard oper-
ating procedures is available.
Second, the theory underlying the activity
tracking methodology establishes an organi-
zational structure for the available domain
knowledge. The activity tracking methodology
uses a model of human-machine interaction
based on the Operator Function Model (O m)
(refs. 1 and 24) to represent knowledge about
how operators use automation. This enhanced
OFM is called an OFM for systems with
Automatic Control Modes (OFM-ACM), in
deference to the role modes play in complex
automation (ref. 25).
Third, the methodology is theoretically
founded on the capability to transform the
available knowledge of the state of the con-
trolled system and goals of the operator into
knowledge for predicting activities represented
in the OFM-ACM. Using the conditions on
available knowledge, this capability provides a
flexible means of constructing a representation
of current and future operator activities.
Fourth, the activity tracking methodology
embodies a theory for processing the available
knowledge. The theory provides that updated
knowledge about the state of the controlled
system can be used to interpret unexpected
operator actions. In addition, it offers a means
by which the required knowledge can be used
to track operator activities in real time. Real-
time interpretation of operator activities
enables an operator’s associate to supply
timely advice and reminders.
The processing architecture was used to
implement the methodology in a computer
system called GT-CATS (Georgia Tech Crew
Activity Tracking System). The thesis of this
research is that the GT-CATS architecture can
construct a real-time representation of opera-
tor automation usage. As a proof-of-concept,
GT-CATS was implemented and evaluated in
the domain of glass cockpit aircraft. The
results of the evaluation showed GT-CATS to
be effective in tracking pilot activities.
The remainder of this document is organized
as follows. Chapter 2 discusses the potential
impact of activity tracking and its roots in
intent inferencing research. Chapter 3

-

.

~

2

.

describes human-automation interaction, with
a focus on modes of automation and the errors
modes engendered as identified through
research on glass cockpit aircraft. The GT-
CATS methodology is not limited to modal
systems, and is in no way bound to glass cock-
pit automation; however, complex systems with
multiple modes present a particularly chal-
lenging domain for the application of activity
tracking, and glass cockpit automation is a
well-studied example of such systems.
To support later discussions, Chapter 3 opens
with a general description of the Boeing
757/767 glass cockpit intended to familiarize
the reader with noteworthy displays, controls,
and modes.

Chapter 4 describes the GT-CATS methodol-
ogy and computer architecture, including the
OFM-ACM. Chapter 5 describes the imple-
mentation of GT-CATS for the glass cockpit.
Chapter 6 describes the GT-CATS evaluation
study. It opens with a discussion of the evalua-
tion methods applied by other researchers,
then presents the GT-CATS evaluation proce-
dure in detail. The results of the evaluation are
given in Chapter 7, including the insights
gained from micro-analysis of action-by-
action activity tracking outcomes. Chapter 8
summarizes GT-CATS research and its find-
ings, and outlines important avenues for
further research.

.

3

.

2. Intent Inferencing

Introduction
In the domain of complex dynamic systems,
intent inferencing can be thought of as the
process of inferring the intentions of a human
operator controlling a complex system from
the state of the system and observed operator
actions. A computer system that can infer
operator intent can then use this representation
to support “intelligent” human-machine
interaction (refs. 4, 18, and 26-29). Aid,
advice, or reminders are intelligent when based
on a model of what the operator i s doing and
why. Activity tracking is a form of intent
inferencing that focuses on explanation of
operator activities without addressing the pre-
cise psychological nature of the formation of
human intentions.
This chapter summarizes intent inferencing
research as conducted in the area of human
operators responsible for the safety and
effectiveness of complex dynamic systems. It
first describes the motivations behind previous
inquiries into the application and feasibility of
intent inferencing. The chapter then describes
models that can effectively support intent
inferencing; such models represent both the
physical and cognitive aspects of the opera-
tor’s task in the domain of interest. Finally, the
chapter presents a review of intent inferencing
and related research.

Motivations for intent inferencing
and related research
This section briefly describes several avenues
of human-machine systems research that have
substantiated the need for intent inferencing.
All were developed in response to the trans-
formation of the operator’s role in increas-
ingly automated complex systems. Although
the use of advanced technology imposes new
demands on operators, human abilities to
anticipate and adapt to novel or uncertain
situations preclude replacing human operators
in complex dynamic systems (ref. 30). The
research discussed in this section attempts to

improve human-machine interaction while
honoring the significance of both the human
operator and the computer components (Le.,
machine agents) of the controlled system.

Intelligent Decision Support Systems
Intelligent decision support systems (IDSSs),
in which the human operator can allocate tasks
to a machine agent, were one early attempt to
wed human versatility and the analytical power
of computers (ref. 31). IDSSs are expert sys-
tems. In the IDSS paradigm, humans guide the
problem-solving process by supplying infor-
mation to the IDSS, and the IDSS performs the
complex reasoning required to solve the
problem. Through a sort of question and
answer session, human operators supply the
information necessary for the IDSS support
complex tasks, such as fault diagnosis.
However, studies exposed deficiencies in the
human-machine interaction fostered by IDSSs.
The allocation of tasks between human and
machine is designed into the system, and is
therefore static. The problem solving process
could be led astray by unanticipated variabil-
ities, uncertainty about applicable types of
knowledge, and deficiencies in the under-
standing between human and IDSS (refs.
3 1-34). To enhance human-machine interac-
tion, researchers instead sought ways to use
computer technology to develop cognitive
tools that allow the human operator to effec-
tively exploit machine capabilities in concert
with his or her own (refs. 35-37).

Adaptive aiding
The concept of adaptive aiding in a sense fore-
saw the difficulties that IDSSs would encounter
(refs. 16 and 17). Adaptive aiding is founded
on two concepts: dynamic task allocation and
error tolerance. Dynamic task allocation can
enhance human-machine interaction by using
the current operating context to determine
how tasks should be allocated to human and
machine agents, and to keep the human
operator “in the loop.” Error tolerance is a
property of the machine agent that can
enhance human performance by detecting

5

errors and helping to correct them or
minimize their effects.
Both dynamic task allocation and error toler-
ance can benefit from intent inferencing. By
incorporating an intent inferencing element, a
machine agent can use its knowledge about the
operator’s current objectives in order to iden-
tify tasks it can support, and to distinguish
operator errors from valid actions.
Hammer, Rouse, and Rouse developed an aid
to assist pilots in the detection and remediation
of procedural errors (refs. 26 and 27). The aid
used a hierarchical script of flight procedures
to identify correct actions, ommitted actions,
and inexplicable actions (i.e., actions that did
not fit into any scripts). A display was devel-
oped that dimmed each procedural step as it
was performed.
To evaluate their computer aiding concepts,
simulator data from four two-person crews
flying a twin engine aircraft were collected for
three scenarios: a normal flight and two
emergency flights that involved engine and
landing gear status indicator failures. The data
included aircraft state variables, discrete
operator actions, and transcripts of verbal crew
communication. These data were used as off-
line input to the computer aid. In a compari-
son between hard-copy procedures checklists
and the computer-based procedures aid, the
computer-based system detected and virtually
eliminated procedural errors. Thus, the
research demonstrated the potential usefulness
of computer-based cockpit aiding systems.

Human-centered automation
Billings’ (ref. 8) concept of human-centered
automation is a philosophy for automation
design that incorporates the need for intent
inferencing. The philosophy is intended to
address common shortcomings of automation
in complex systems. Automation is often tech-
nology-driven: new technology enables some
aspect of the human operator’s task to be
automated, but takes the human operator “out
of the loop” in the process. Human-centered
automation seeks to keep the operator in
command, which in turn requires that the
operator is informed and involved with

monitoring the automation (ref. 14). As con-
ceived by Billings, human-centered automa-
tion requires cross-monitoring, where both
human and machine agents monitor the
others. For cross-monitoring to be effective,
each element in the system must have knowl-
edge of the others’ intent; thus, an intent
inferencing component is a critical element of
human-centered automation.

Operator’s associate
An operator’s associate is a machine agent that
acts like a human assistant-subordinate and
cooperative with respect to the operator, able
to assume responsibility for tasks on demand,
and able to monitor and anticipate situations
and events (refs. 4, 21, 38, and 39). Intent
inferencing is vital for providing the opera-
tor’s associate with an understanding of what
the operator is doing-and will be doing-and
why. Using this knowledge, the control com-
ponent of the operator’s associate can provide
timely advice and reminders, detect and reme-
diate errors, and carry out tasks allocated to it
by the human operator. Thus, the concept of a
computer-based operator’s associate encom-
passes both adaptive aiding and supporting the
cognitive activities of the operator.
Researchers have pursued the operator’s asso-
ciate concept along several broad fronts. For
example, the DAFWA-funded USAFLockheed
Pilot’s Associate system is an operator’s asso-
ciate for fighter pilots (refs. 2, 22, and 23).
The Pilot’s Associate includes an intelligent
pilot-vehicle interface that uses inferred intent
to predict pilot performance, required
resources, and the consequences of errors. The
review of research later in this chapter dis-
cusses this and other important research on
operator’s associate systems in detail.

Intelligent information displays
Another application for intent inferencing
systems is to guide when and how to display
information to the human operator. For
example, researchers have found evidence that
information requirements of operators vary
according to the plans they are currently pur-
suing (ref. 40). Operator performance can be

-

6

.

supported by configuring displays according
to the information requirements of a particular
plan; the plan operators are currently pursuing
can be determined through intent inferencing.
The inteIligent pilot-vehicle interface in the
Pilot’s Associate, for example, incorporates
intelligent information displays as one means
of aiding pilots.

Intelligent tutoring systems
Another important application of intent infer-
encing is intelligent tutoring systems. Due to
the prohibitive cost of ‘complete’ training,
training programs typically result in operators
that are far from experts-at best they are
“trained novices” (ref. 15). Intelligent tutor-
ing systems can help eliminate some of the on-
the-job training normally required to achieve
expert performance.
Intent inferencing can support dynamic stu-
dent and expert models in intelligent tutoring
systems (ref. 7). A student model that uses
intent inferencing to understand the actions of
the trainee can guide the instructional process.
In addition, expert models can benefit from
the predictive capabilities provided by intent
inferencing. Rather than using “canned”
scenarios that limit the scope of training, an
expert model can predict what activities the
operator should perform in varied contexts,
thereby extending training to reflect real-
world situations automatically.

Operator models for intent
inferencing
Intent inferencing systems require domain-
specific knowledge about the operator’s task
and the controlled system, and a means for
controlling processing of this knowledge.
Using updated information about the state of
the system and the actions the operator per-
forms, an intent inferencer processes knowl-
edge about the operator’s task to produce a
dynamic representation of operator activities
in the current operational context.
Human-machine systems research has estab-
lished the importance of well-defined models
of the human operator (refs. 1 and 16). A
variety of models of the human operator have

been developed; different models can be char-
acterized conceptually by their purpose,
structure, content, and specificity (ref. 41).
Descriptive models include Rasmussen’s (ref.
42) decision ladder and abstraction hierarchy;
the OFM (ref. 1) and goal-means network (ref.
36), on the other hand, exemplify normative
models. Model structure can be computational,
as with control theoretic models (ref. 43), dis-
crete control models (ref. 44), and OFMs-or
conceptual, like the abstraction hierarchy. The
content of models ranges from mental repre-
sentations of the task derived from psychology
(refs. 12, 45, and 46), to engineering models
of overt operator activities (e;g., the
Om)-the type of model often referred to
generally as an “operator model.” Finally,
models can be specific to a particular device, a
class of machines (Le., task models), or they
can focus on cognitive processes independent
of the machine agent.
Cognitive engineering models of the operator
that are capable of dynamically and computa-
tionally representing salient physical and cog-
nitive aspects of the operator’s task in the
domain of interest provide one way to support
effective human-machine interaction in com-
plex systems (ref. 24). Given the current sys-
tem state and system goals, the model repre-
sents what interventions the operator should
undertake and why, along with the control
options the operator can exercise to attain the
desired system state. The model also specifies
a hierarchy of activities, in order to represent
the complexity of the system in a manner that
is cognitively compatible with the operator’s
actual representation of the task. Thus, to
effectively provide the intelligence necessary
to aid the operator (via intent inferencing), a
model should be both normative, in that it can
generate expectations of operator activities,
and interpretative, in that it can ‘understand’
operator activities in the current context.

7

Figure 1. A generic OFM.

Operator Function Model
The Operator Function Model (OFM) is an
example of a model developed towards these
ends (ref. 1). The OFM (figure 1) is a
hierarchical-heterarchical network of finite-
state automata, based on the discrete control
models of Miller (ref. 44). Nodes in the net-
work represent operator activities; arcs repre-
sent enabling conditions that initiate or termi-
nate operator activities as dictated by system
events or the results of other activities. These
enabling conditions are non-deterministic in
that they identify a set of activities plausible
for the current context, rather than a unique
next activity.
The OFM hierarchy represents how operators
might decompose control functions, from
high-level functions down to individual man-
ual or cognitive actions. The OFM heterarchy
represents collections of activities at a particu-
lar level in hierarchy that are performed
concurrently-a feature that enables the OFM
to represent how operators dynamically

coordinate activities and focus attention. Thus,
the OFM provides a flexible framework for
representing operator activities in complex
systems (refs. 1 and 24). Chapters four and
five discuss enhancements to the OFM that led
to the OFM for systems with Automatic Con-
trol Modes (OFM-ACM) used in this research.

Figure 2. Generic Plan-Goal Graph.

Plan-Goal Graph
Another model that can support intent infer-
encing is a Plan-Goal Graph (PGG) (ref. 29).
A PGG is a network of plans and goals. Unlike
the OFM, the PGG derives from research in
psychology and artificial intelligence using
Shank and Abelson's (ref. 47) concepts of
scripts, plans, and goals as cognitive structures
of understanding (ref. 48).
In a PGG (figure 2), each high-level operator
goal is decomposed into a set of plans that can
be used to achieve it. Plans are then decom-
posed into subgoals, which in turn are decom-
posed into lower-level plans. The lowest-level

-

8

.

plans in the PGG are decomposed into the
individual operator actions required to execute
each plan. Plans may also have scripts that
represent loosely ordered sequences of
required actions. With this structure the PGG
can represent the options available to the
human operator in a complex system.
The links in a PGG are important for repre-
senting system-dependent constraints on rela-
tionships between plans and the goals they
satisfy. Feasibility constraints express the
range of system parameters within which a
plan may be effectively used to satisfy a goal.
Ambiguity constraints, so called because they
are used to resolve the ambiguity present when
a plan has multiple goals, represent the nor-
mative approach to satisfying a goal given the
values of current system parameters. In addi-
tion to the constraints represented by the links
in the PGG, each plan and goal has a list of
other plans or goals with which it is mutually
exclusive. Such an exclusion can be associated
with values of pertinent system parameters, if
required. These constraints, together with its
structure, enable the PGG to represent the
domain knowledge associated with the con-
trolled system. The PGG is similar to the OFM
in that it represents operator activities in a

hierarchy, and contains information about
normative activities given current system state.

Intent lnferencing and related
research
This section describes intent inferencing
research in terms of the models and process-
ing used, the domain of application, and the
implications for future research. In cases
where an intent inferencing system has been
implemented in an intelligent aiding and/or
training system, this work is also discussed.

0FMSpI-t
The Operator Function Model expert system
(OFMspert) research program focuses on the
design of an operator’s associate for complex
dynamic systems (ref. 4). OFMspert was
implemented in the context of a satellite
ground control system (ref. I). OFMspert uses
the OFM as the source of knowledge about the
controlled system and related operator func-
tions. OFMspert’s intent inferencing compo-
nent, the Actions Interpreter (ACTIN), is
responsible for maintaining a dynamic, con-
text-specific representation of current best

Controlled
High Level Controller

(Event Queue)

Current Problem
Enhanced I

r
, 1

Workstation I
Description

Figure 3. Generic OFMspert architecture.

9

hypotheses about operator activities. Other
components are responsible for providing
system-state knowledge, and controlling real-
time processing (figure 3).
ACTIN was implemented as a blackboard sys-
tem (ref. 49). Given system state information,
ACTIN posts functions, subfunctions, and
tasks from the OFM on its blackboard. As
OFMspert detects operator actions, they too
are posted on the blackboard and linked to
every task they can support according to the
OFM. These functions, subfunctions, tasks, and
actions represent the inferred intent of the
operator (figure 4). An important property of
OFMspert’s intent inferencing process is
maximal connectivity; actions are interpreted
to support as many tasks as possible. In this
way, OFMspert explains operator actions in
terms of all feasible tasks given the current
system state.
Once actions have been linked to the specific
task(s) they can support, ACTIN assesses the
blackboard. The blackboard knowledge
sources check to to ensure that constraints on
the temporal ordering of actions involved in
procedures, and constraints on the semantic

content of actions that have values associated
with them are all satisfied. For example, an
action to replace a particular piece of equip-
ment is constrained by the availability of the
replacement equipment. Blackboard knowl-
edge sources check to ensure that the replace-
ment equipment is available. Thus, the assess-
ment procedure provides the final ‘under-
standing’ of operator actions in OFMspert.

ALLY
OFMspert’ s understanding capabilities were
subsequently augmented with control capa-
bilities, and the capability to use inferred
intentions to guide user interaction. The
resulting operator’s associate, called ALLY,
was empirically evaluated by comparing the
performance of one satellite ground controller
using ALLY to the performance of a team of
two human controllers (ref. 38). No significant
performance differences were found, which
provides empirical evidence for the efficacy of
an operator’s associate.

I 1 Functions

Figure 4. ACTIN (Actions Interpreter)-a dynamic, hierarchical representation of operator
intentions

10

GT-MOCA
A second extension to OFMspert research is
the Georgia Tech Mission Operations Coop-
erative Assistant (GT-MOCA). GT-MOCA is
an operator’s associate designed according to a
theory of human-computer cooperative prob-
lem solving that embodies five principles:
human authority, mutual intelligibility, open-
ness and honesty, management of trouble, and
multiple perspectives (ref. 39). GT-MOCA
uses the ACTIN intent inferencing module to
provide an interactive, inspectable model of
expected operator’s activities, along with con-
text-specific reminders. Through empirical
evaluation, these features were shown to pro-
mote improved performance. Furthermore
operators received it positively, supporting
the claim that the design principles GT-
MOCA embodies are valid.

GT-VITA
The Georgia Tech Visual and Inspectable
Tutor and Assistant (GT-VITA) uses the OFM
and OFMspert to structure student and expert
models for an intelligent tutoring system (ref.
7). GT-VITA uses these models to control
student interaction with the tutor. An imple-
mentation of GT-VITA was empirically evalu-
ated using actual NASA satellite ground
controllers as subjects. GT-VITA was so effec-
tive that it reduced the estimated training time
required from three months of on-the-job
training to just days. It has since become an
integral part of NASA’s orientation program
for ground control personnel. In combination
with GT-MOCA, GT-VITA also conceptualizes
the tutor-aid paradigm, in which the same
knowledge structures used to support training
gradually shape an operator’s associate that
supports the experienced operator (ref. 50).

OPAL
A second important body of intent inferencing
research centers around OPAL (Operater Plan
Analysis Logic), an intent inferencing system
that uses the Plan-Goal Graph to anticipate the
context-driven activities of the human operator
(ref. 29). This research was also motivated by

the need for intelligent aiding systems to
detect and help remediate errors (ref. 17), and
to design and control intelligent, intent-driven
interfaces to complex systems (ref. 18).
OPAL’S intent inferencing process creates a
representation of the operator’s current intent
expressed as active instances of goals, plans,
and scripts. Initially, a set of active goals and
plans is identified with the overall mission of
the operator. As operator actions are detected,
OPAL first attempts to associate them with
active scripts. If an action matches an active
script, OPAL explains the action as supporting
the procedure that the script represents. If the
action cannot be explained in this manner,
OPAL next attempts to use the PGG to deter-
mine if the action can be explained as
supporting a known active plan. If not, OPAL
uses the structure of the PGG and its associated
constraints to attempt to locate other plans and
goals that the action can support in the current
situation. Failing this, OPAL identifies the
action as a possible error.
OPAL is similar to OFMspert in several ways.
First, both use network models that establish a
hierarchy of operator activities. Both use
domain-specific conditions specified in the
model to postulate the activities operators
should address in the current context. OPAL
differs from OFMspert in that it uses scripts to
explain actions involved with procedural
activities, in the manner of systems designed
for natural language understanding (ref. 48).
OFMspert, on the other hand, uses a
blackboard architecture to maintain a dynamic
representation of operator activities. Both
systems assess constraints on operator actions
in generating explanations.

USAFLockheed Pilot’s Associate
OPAL was initially evaluated in the context of
a small process control system (ref. 29), but
has since been used as the intent inferencing
module in the Pilot’s Associate (refs. 2, 22,
and 23). OPAL’s predictions and explanations
for operator actions are used as input to an
intelligent pilot-vehicle interface. The pilot
vehicle interface uses this information to pre-
dict the pilot’s performance, to predict the

11

resources (e.g., information, weapons systems)
the pilot will require, and to classify pilot
errors and predict their consequences. OPAL
also supplies input to the tactical planning
module of the Pilot’s Associate.
As part of the intelligent pilot-vehicle inter-
face, the Pilot’s Associate also incorporates
an information management module that uses
inferred plans and goals to intelligently man-
age displays (ref. 3). This system uses OPAL’S
output as input to an algorithm that selects
displays based upon the information required
by the operator. The algorithm selects more
displays until either all required information is
presented, or there is no space left on any
device to display the rest. In the spirit of the
Pilot’s Associate, a Rotorcraft Pilot’s Associate
that uses these principles is also under
development (ref. 5 1).

Task Support SystedCockpit Task
Management System
The Task Support System is another design
for an intelligent interface based on intent
inferencing for military pilots (ref. 52). An
interesting feature of the Task Support System
is that it employs a distributed model of the
pilot’s task. Specifically, the Task Support
System is agent-based, in that it is comprised
of collection of software objects. System
agents encapsulate the current state of the
actual aircraft system or subsystem they repre-
sent (including cockpit displays and controls),
along with static knowledge about these sys-
tems and subsystems. Task agents receive
information from the system agents, which
they use in conjunction with internal knowl-
edge to assist the pilot in performing the task
they represent. Other task agents use their
knowledge to coordinate lower-level task
agents. The agents and the communication
among agents thereby represents the model of
the pilot’s task.
The Task Support System provides several
types of assistance to the pilot, in accordance
with Funk and Lind’s (ref. 52) recommenda-
tions for an integrative pilot-vehicle interface.
Each task agent determines when its task
should be initiated, and alerts the pilot if he or

she is late in initiating it; task agents notify
system agents representing displays when par-
ticular information should be displayed, and in
what mode; pilots can instruct task agents to
either monitor actions during the task, recom-
mend actions, or perform the task automati-
cally; and, task agents provide system alerting
functions and monitor successful task comple-
tion. In addition, the Task Support System
displays active and pending tasks. The Task
Support System was evaluated against a base-
line interface and found superior in both
performance and pilot preference.
Research on the Task Support System paved
the way for the Cockpit Task Management
System (ref. 20). The Cockpit Task Manage-
ment System is designed to aid the pilot in
“the process of initiating, monitoring, priori-
tizing, and terminating tasks (p. 1521)’’ As
in the Task Support System, system agents and
task agents were instantiated to represent task
and domain knowledge in a distributed fash-
ion. The Cockpit Task Management System
agents provide pilots with knowledge about
task state (i.e., latent, upcoming, in-progress,
suggested, or finished) and task status (i.e.,
satisfactory or unsatisfactory) using color-
coded displays. Furthermore, this information
is prioritized to emphasize important tasks. A
simulator study comparing pilot performance
with the Cockpit Task Management System to
performance without it showed the Cockpit
Task Management System significantly
improved task completion, and indicated posi-
tive effects on pilot response time, task priori-
tization, and control of important aircraft
parameters. Cockpit Task Management
System research is being followed by work on
an Agenda Manager that assists pilots in
highly automated systems in which most
lower-level tasks are performed automatically.

Cockpit Assistant System and Intelligent
Flight Path Monitor
The Cockpit Assistant System (CASSY) is
another pilot’s associate system developed in
Germany (ref. 53). The Intelligent Flight Path
Monitor is under development in the United

12

Kingdom (ref. 54). These systems are notable
for several reasons. First, they draw on
“human-centered automation” concepts
developed in the U.S. (ref. 8) as well as work
on operator’s associates such as the Pilot’s
Associate, in an effort to produce an opera-
tor’s associate for commercial airline pilots.
They use advanced voice interfaces for inter-
action, and integrate different types of
modeling techniques (e.g., fuzzy logic, petri
nets, and neural networks). Both systems are
being aggressively developed by consortia of
universities and/or government and industry,
and like the Pilot’s Associate, both are ambi-
tiously designed to integrate assistance for a
full range of aviation problems. CASSY is
reported to have passed in-flight feasibility
testing, and cost estimates for commercial
certification have been calculated to include
the full re-design of cockpit automation
required for fully integrated implementation.
Due to their similarities to the Pilot’s Associate
discussed above, CASSY and the planned
Intelligent Flight Path Monitor are not detailed
here; rather, the point is that European
researchers have strongly embraced the
operator’s associate concept, and devoted con-
siderable resources to its development. Their
studies have shown it to be promising, and now
they are actively pursuing the goal of certify-
ing such systems for use on the flight deck. In
addition to CASSY and the Intelligent Flight
Path Monitor, Robson et al. (ref. 54) indicate
that several other research programs aimed at
developing operator’s associates are afoot
elsewhere in Europe; indeed, this has been the
case for some time (ref. 55) .

Summary
This chapter described the concepts of the
operator’s associate, human-centered automa-
tion, intelligent interfaces, and intelligent
tutoring systems. It also described the impor-
tance of operator models to support such
systems. Finally it reviewed important opera-
tor’s associate systems and related systems to
provide a theoretical and applied foundation
for this research.
The next chapter, on modes in complex sys-
tems, summarizes a considerable body of
research related to intent inferencing research.
Problems with modes in complex
systems-and aviation in particular-have
contributed to the focus on operator’s associ-
ates for the cockpit. Furthermore, as the next
chapter describes, the function of an opera-
tor’s associate is complicated in situations
where operators must supervise the operation
of multiple modes, making effective coordina-
tion and interaction between the human
operator and an associate even more crucial.
While several research projects have explored
intent inferencing to support intelligent aiding
systems, extant data are either classified (due
to their military significance), proprietary, or
pertinent to tasks that are less complex than
flight deck mode management. The present
research therefore seeks to provide publically
available data on real-time activity tracking
for a class of systems in which the Pilot’s
Associate is included. In the process, it posits
theoretically important properties of the
proposed activity tracking methodology, and
demonstrates its effectiveness.

13

.

3. Modes In Complex Systems

Introduction
Modes are an important feature of automation
in complex systems. Modes have proliferated
as a useful means of formatting displays,
entering data, and providing control options to
the human operator; however, modes can
contribute to operator confusion. Accidents
involving glass cockpit aircraft (refs. 56 and
57)-as well as an abundance of less serious
mode-related incidents (refs. 58-60)-provide
grim evidence for this claim.
Early human factors research on cockpit
automation addressed a broad range of issues,
including modes (refs. 61-65). While some
researchers stressed the importance of com-
munication, coordination, and cooperation
among pilots (ref. 66), Wiener’s (ref. 67)
survey of pilots helped focus attention on
modes. Wiener found that automation can
increase workload at times when it is already
high-evidence of Bainbridge’s (ref. 10)
“irony of automation”-and characterized
the automation as “clumsy.” Pilots at times
fell “behind the airplane,” often wondering
“What is it doing now?,” “Why is it doing
it?;” and “What’s it going to do next?”
A survey and subsequent simulator study of a
different glass cockpit aircraft sought reasons
for “automation surprises,” and areas of mis-
understanding (ref. 68). The research identi-
fies several mode-related difficulties, including
mode availability or disengagement, tracking
automatic mode transitions, Vertical Naviga-
tion (VNAV) mode target values and logic,
infrequently used modes, and selecting from
multiple modes. Subsequent studies addressed
pilot “mode awareness” in other glass cockpit

aircraft (refs. 69 and 70). Again, the research
indicates the “strong and silent” nature of
advanced automation can compromise mode
awareness; the automation can surprise pilots
by taking unexpected actions, and by failing
to take expected actions. In some cases, pilots
experience these problems when they prepare
a mode for use, then forget to engage it.
The capability to track operator activities in
complex systems with multiple modes is an
important step toward operator’s associates,
intelligent tutoring systems, and interfaces
that can effectively neutralize mode-related
problems. Although GT-CATS’ domain of
application need not have modes, it recognizes
this requirement. This chapter provides a
foundation for understanding modes in com-
plex systems and the problems they engender.
The chapter classifies modes, then focuses on
modes of automation used to control complex
systems. After characterizing control modes,
the chapter outlines the demands that modes
impose on operators’ cognitive resources, and
how demand-resource mismatches can cause
breakdowns in human-machine interaction.
For the reader unfamiliar with ‘glass cockpit’
airplane modes used as examples, the chapter
first provides an overview of the automation
found in the Boeing 757/767, a typical glass
cockpit aircraft.

The Boeing 757/767 glass cockpit
Glass cockpit aircraft like the Boeing 757/767
have complex automation that pilots monitor
using CRT-based (i.e., “glass”) displays. The
automation requires pilots to supervise the
operation of multiple modes. A range of
modes offers specific control advantages, but
also results in a wide variety of behaviors and
possible transitions in different contexts of
which pilots must be aware.

15

Figure 5. 757/767 Mode Control Panel (MCP).

Like other glass cockpit aircraft, the 757/767
Autopilot Flight Director System, or
‘autoflight system,’ has a mode control panel
(MCP) that allows pilots to coordinate control
of autopilot, flight director, autothrottle, and
altitude alert functions. The MCP provides the
control and display functions used by the crew
to manage different modes. It houses all the
switches for selecting modes, as well as knobs
for selecting heading, altitude, airspeedmach,
and vertical speed (figure 5). The values
selected on the MCP are target states to be
acquired in certain modes.

Line
Select

\

Page
Select
Buttons.

Pilots can couple autoflight system operation
with the Flight Management System (FMS) by
selecting certain modes on the MCP. The FMS
provides computerized navigation functions; -
information programmed in the FMS defines ,

the flight profile the autoflight system follows,
instead of MCP-selected target values. Both
757/767 crew members have a FMS Control
and Display Unit (CDU). The CDU has multi-
ple display pages that enable flight profiles to
be viewed and modified, as well as pages for
addressing other flight management functions
(figure 6).
Each crew member also has two “glass” dis-
plays critical for monitoring the operation of
the autoflight system and FMS. These are the
Attitude Director Indicator (ADI) (figure 7)
and Horizontal Situation Indicator (HSI)
(figure 8). The AD1 shows the attitude of the
aircraft, as well as other information important
for monitoring the operation of selected
modes. In particular, the AD1 displays Flight
Mode Annunciators (FMAs) that indicate
which modes are engaged or armed for auto-
matic engagement (see figure 7). The HSI
displays the position of the aircraft relative to
lateral navigation information programmed in
the FMS. The HSI enables crew members to
tailor this information by selecting the desired
display range and viewing mode.

Figure 6. 757/767 FMS Control and Display
Unit (CDU).

16

Roll
Indicator Flight Director
I Command Bars

Pitch
Ladder

Aircraft

Autopilot
0 Status

Autothrottle

Autothrottle

Annunciator . .

LNAV
34 Engaged

-
Engaged Roll Mode

Annunciator Pitch Mode
Annunciator

Figure 7. Attitude Director Indicator (ADI).

Current Programmed
Heading LNAV Lateral

Profile

Current

Programmed
@ Waypoint

\

MCP-selected
Heading

Figure 8. Horizontal Situation Indicator (HSI).

Figure 9 depicts the layout of these controls
and displays on the flight deck-a configura-
tion typical of all glass cockpit aircraft. The
MCP is mounted on the glareshield between
the two pilots. The ADIs are located on the

main instrument panel in front of each pilot.
The HSIs are located below each ADI. The
CDUs are located on the pedestal between the
pilots. The location of the CDUs is significant
because pilots must look down to use them.

17

...............
c- ADIS-

............... 1- HSls--b

Figure 9. Glass cockpit layout.

Boeing 757/767 automation
This section describes the structure of 757/767
cockpit automation used for flight control and
navigation. The first subsection describes the
autopilot. The second describes how the
modes are used in particular contexts.

Autopilot
Engagement

Switches

CGBXjeGE El I
Figure 10. MCP autopilot engagement
switches.

757/767 Autopilot
During autopilot operation, pilot inputs made
using the MCP (and, in appropriate modes, the
CDUs) automatically command the flight

control surfaces of the aircraft. The 757/767
has three autopilots, any one of which can be
engaged for automatic flight control. Pilots
typically engage an autopilot soon after take-
off, using switches on the MCP (figure 10).
Pilots select autopilot and autothrottle modes
using switches on the MCP. Like the autopilot
engagement switches, the mode selection
switches are push-on, push-off switches with an
integral “on7’ light to indicate a particular
mode is engaged. An engaged mode can be
disengaged by pushing a switch again, condi-
tions permitting. A mode’s switch light goes
off if disengagement is automatically inhib-
ited, or if the mode disengages automatically.
An autopilot can be used in either command
mode or control wheel steering mode. In con-
trol wheel steering mode, the autopilot allows
the pilot to use light force on the yoke to con-
trol flight manually with assistance from the
autopilot servos. Command mode provides
fully automatic flight control. When an
autopilot is engaged in command mode, the
autopilot provides all the capabilities required
to reach and maintain the target values set on
the MCP. Pilots typically engage an autopilot
in command mode soon after takeoff.

-

-

18

Captain's
Flight Director

I Switch

First Officer's
Flight Director

Switch

Figure 1 1. MCP Flight Director switches.

Each crew member has a flight director. When
engaged, it positions command bars on the
pilot's AD1 (see figure 7). If the autopilot is
not engaged, the pilot can still select modes
and track the flight director command bars
manually to follow the profile that the autopi-
lot would command if engaged. Flight director
switches are also found on the MCP (figure
1 1). The autopilot and flight director systems
are commonly used together; the flight direc-
tor command bars provide a means of verify-
ing the control actions of the autopilot. The
autopilot command and control wheel steering
modes, together with the flight director, pro-
vide the pilot with several levels of assisted
flight, from manual flight, to control wheel
steering, to flight director only, to flight direc-
tor with control wheel steering, to command
with or without the flight director.

The MCP also has a switch for arming the
autothrottle system (i.e., making it available
for use) (figure 12). The autothrottle is nor-
mally engaged prior to takeoff and used
throughout a flight. The autothrottle system
automatically controls engine thrust by com-
manding servos for ea ch throttle. Limits on
thrust are selected via a separate panel called
the thrust selector panel.

Pilots may choose from Climb, Climb-1,
Climb-2, or Takeoff thrust-each provides a
specific level of engine performance and
economy.

Autothrottle Arm
Switch

Figure 12. MCP autothrottle arm switch.

The autopilot works closely with the
autothrottle. Different autopilot modes may
automatically engage specific autothrottle
modes, in order to control thrust in a manner
complementary to control of the flight control
surfaces. This coupling permits the aircraft to
fly the desired vertical profile.

757/767 modes
The 757/767 automation modes are organized
according to the dimensions of flight they are
used to control. The autopilot has roll modes
and pitch modes, and the autothrottle provides
modes for automatic thrust control. There are
eight roll modes, ten pitch modes, and seven
autothrottle modes on the 757/767. Although
not all of these modes can occur in combina-
tion (many are used only for brief or abnor-
mal periods of flight), the 7571767 autoflight
system provides pilots with numerous control
options.

19

Heading
Display
Window

Vertical Speed
Display Window

LNAV mode
switch

HDG SEL m mode switch
\ 1 (push knob)

t
I

HDG HOLD mode
switch

Figure 13. 757/767 lateral mode MCP controls
and displays.

Modes are structured to provide multiple levels
of automation, just as the autopilot and flight
director make possible multiple levels of
assistance. For example, pilots commonly use
three different roll modes to control lateral
profile: heading hold (HDG HOLD), heading
select (HDG SEL), and lateral navigation
(LNAV) . The area of the MCP dedicated to
these modes is shown in Figure 13. When the
HDG HOLD switch is pushed, HDG HOLD
mode maintains the current heading. HDG SEL
mode enables the pilot to select a heading on
the MCP, and acquire the selected heading.
LNAV offers the highest level of automation.
LNAV takes input from the FMS to intercept
and track a programmed lateral profile from
the aircraft’s origin to destination.

Modes also differ in the way in which they
control a specific aspect of flight. For exam-
ple, vertical speed (VIS) mode is used to climb
or descend at a selected rate by adjusting the
aircraft’s control surfaces. V/S is an autopilot
pitch mode commonly used in combination
with the autothrottle speed (SPD) mode, which
adjusts thrust to control airspeed; the V/S-SPD
mode combination is referred to simply as VIS
mode. (In later discussions, commonly
occurring pairs of pitch and autothrottle

Vertical Sked
Selector

Figure 14. MCP controls and displays for V/S
mode.

modes are treated together and referred to as
“vertical axis modes,” or “vertical modes.”
The mode combination is usually referred to
by a single name, e.g., a flight level change
(FL CH) autothrottle mode combined with a
speed (SPD) pitch mode is referred to as ‘‘E
CH mode” for parsimony.) Pilots can engage
V/S mode by pushing the VIS mode switch on
the MCP. Once V/S mode is engaged, the
current vertical speed is displayed on the MCP,
and pilots use the thumb wheel to adjust the
target vertical speed (see figure 14).

Whereas V/S mode uses the autothrottle SPD
mode, flight level change (FL CH) mode uses
the FL CH autothrottle mode in conjunction
with the autopilot speed (SPD) mode (i.e.,
there exists a SPD mode for both the autopilot
and the autothrottle). In FL CH, the autopilot
adjusts pitch to hold the current airspeed, while
the autothrottle adjusts thrust to climb or
descend. Pilots speak of speed being “on
pitch” in FL CH mode (i.e., speed is con-
trolled via pitch adjustments), and “on thrust”
in VIS mode (i.e., speed is controlled via thrust
adjustments). In both VIS and FL CH mode,
the MCP airspeed/mach display window allows
speed to be adjusted (see figure 15).

-

20

Airspeed/Mach Altitude Display
Display Window Window

FL CH mode

Ai rspeedlhlac h
Selector Knob

Figure 15. MCP vertical mode controls and displays.

V/S and FL CH are two of the 757/767’s verti-
cal modes; the two others are altitude hold
(ALT HOLD) and vertical navigation
(VNAV). ALT HOLD is used in a manner
analogous to HDG HOLD; pushing the MCP
ALT HOLD switch levels the aircraft at the
current altitude. Figure 15 shows the MCP
controls and displays required to use vertical
axis modes.
Vertical navigation (VNAV) enables fully
automatic FMS control over the programmed
vertical profile. In VNAV mode, autothrottle
modes are “slaved” to provide the appropri-
ate thrust control. (“VNAV mode” is a very
general term, as VNAV can be thought of as
having multiple .submodes that occur in com-
bination with different autothrottle modes.)
VNAV mode is the highest level of vertical
profile automation, and maximizes fuel econ-
omy; FL CH, on the other hand, enables fast
climbs or descents.
The MCP-selected altitude is one of the most
important inputs pilots make. Pilots set the
MCP altitude to the altitude cleared by Air
Traffic Control (ATC) before engaging a ver-
tical mode. In fact, if an altitude different from
the aircraft’s current altitude is not set on the
MCP, neither FL CH nor VNAV will engage.
In VNAV, the MCP-selected altitude limits the
aircraft’s climb or descent, regardless of the
programmed vertical profile. This gives rise to

a number of difficulties, including: forgetting
to set a lower altitude in cruise, so that VNAV
cannot descend; or, setting an altitude beyond
a speed/altitude restriction, then inadvertently
erasing the restriction from :he CDU, so that
the restriction is ignored on the way to the
MCP-selected altitude. To further complicate
matters, VIS can fly away from the MCP
selected altitude (e.g., an altitude can be
reached via V/S climb, then a negative vertical
speed can be used to fly into terrain with no
altitude protection). Some pilots/airlines stan-
dardize the use of the MCP-selected altitude,
requiring that the nearest cleared altitude
directed by ATC is always set before a vertical
mode (other than ALT HOLD) is engaged.
Another automation feature that impacts ver-
tical mode use in the automatic altitude cap-
ture (ALT CAP) mode. ALT CAP engages
automatically, disengaging the vertical mode,
when the aircraft is approaching the MCP-
selected altitude (ALT CAP only engages
automatically, so it has no mode switch on the
MCP). ALT CAP smoothes the g-forces
involved with the capture maneuver, then
ALT HOLD mode engages automatically to
hold the MCP-selected altitude. These mode
transitions are tied to the AFDS altitude
alerting system, which provides visual and
aural alerts as the aircraft approaches the
MCP-selected altitude. The altitude alerting

21

system also warns pilots of deviations from
the selected altitude (e.g., in V/S mode).

Automation use
Pilots are trained to use the automation in a
manner consistent with the philosophy and
guidelines of the managing air carrier. Guide-
lines vary slightly among carriers. This sub-
section describes how the automation is nor-
mally used following one major carrier’s
guidelines. It also notes some other mode
usage techniques that, although not officially
taught, are widely accepted and used by line
pilots.
Automation use begins before takeoff, when
the pilots program the planned flight informa-
tion and performance parameters into the
FMS via the CDUs. Information about the
flight’s origin and destination airports,
planned departure procedures and (if known)
arrival procedures are programmed, along with
the waypoints to be crossed during the high-
altitude portions of flight. This information
defines the lateral and vertical profiles. With
this information, the autopilot can use infor-
mation from the FMS waypoint database and
the aircraft’s inertial reference system to
navigate in LNAV and VNAV modes.
Also before takeoff, the pilots turn their flight
directors on and position the autothrottle
switch to ARM. This arms the autothrottle in
takeoff mode-a special purpose mode only
used for takeoff. HDG HOLD is engaged with
the runway heading selected on the MCP. To
takeoff, the pilots advance the throttles and the
autothrottle assumes control of thrust. At
rotation speed, one crew member, designated
the “pilot flying” (PF), rotates the aircraft to
the pitch indicated by the flight director, and
holds the heading indicated by the flight
director. Once airborne, the pilot-not-flying
(PNF) retracts the landing gear, and begins to
retract the flaps according a speed schedule
specified before takeoff. At the point at which
the aircraft exhibits a positive rate of climb, the
climb phase of flight begins.
At 1,000 feet above ground level (1,000 feet
AGL);the PNF engages a vertical mode to be

used for climbing, engages the autopilot in
command mode, and sets the limit thrust on
the thrust selector panel. The pilots now select
a vertical mode. Guidelines dictate that if the
appropriate departure information is pro-
grammed in the FMS, VNAV should be used;
otherwise FL CH should be used. Even if the
FMS is properly programmed, the crew may
opt to use FL CH in order to expedite the
climb to a required altitude because of traffic,
terrain, and/or weather. FL CH mode might
also be used to enable rapid modifications to
the flight plan, without reprogramming the
FMS
After the autopilot is engaged by selecting
command mode following takeoff, pilots use
HDG SEL mode to fly heading(s) specified by
ATC until the FMS-programmed lateral pro-
file can be intercepted. When on a heading
that intercepts the route programmed in the
FMS, the PNF arms LNAV. Figure 8 shows
how the HSI looks when an intercept heading
is selected; the dashed line indicates the MCP-
selected heading intercepts the FMS pro-
grammed route. When the FMS route is inter-
cepted, LNAV mode engages automatically
and the aircraft turns onto the route. As long
as the lateral profile is valid, piIots normally
remain in LNAV mode. If, however, ATC
requires a different heading, pilots either revert
to HDG SEL or, if they have time, reprogram
the FMS. Pilots may also use HDG HOLD to
maintain a heading-a way to stop a HDG
SEL turn or prevent a programmed LNAV
turn. They may also use a heading hold
submode of LNAV to hold the aircraft’s
heading after flying beyond the last pro-
grammed waypoint. HDG SEL, HDG HOLD,
and LNAV are the roll modes commonly used
to handle lateral navigation.
UnIike lateral axis modes, the use of vertical
modes is closely tied to phase of flight. VNAV,
in particular, performs differently depending
on the phase of flight. Figures 16 shows the
various manifestations of VNAV during the
climb and initial cruise phases of flight; figure
17 shows how VNAV works during the cruise-
to-descent and descent phases.

-

-

.

22

ECON cruise SDeed n VNAV PTH 3 VNAV PTH

(initii

ABC

Figure 16. Typical VNAV profile and mode annunciations during climb from VNAV engagement to
cruise flight.

The VNAV profile shown in Figure 16 begins
with initial VNAV engagement following
autopilot command mode engagement and
thrust selection after takeoff. If no waypoint
crossing restrictions are programmed into the
FMS, pilots fly a default (Le., federally man-
dated) 250 knot climb profile to the 10,000
feet mean sea level (10,000 feet MSL) transi-
tion altitude using the VNAV SPD submode of
VNAV. In cases where a speedaltitude restric-
tion is programmed at a waypoint (e.g., cross
ABC at 250 knots and 6000 feet), VNAV SPD
changes to VNAV path (VNAV PTH) at the
altitude restriction and remains in VNAV PTH
until after the waypoint is passed.
To comply with a speedaltitude restriction,
such as that at waypoint ABC in figure 16,
pilots must exercise care in setting the MCP
altitude. If ATC cleared the aircraft to 10,000
feet MSL before takeoff, the crew may
set10,OOO feet on the MCP and “trust the
automation” to handle the level-off at the
programmed crossing restriction and resume

climbing to 10,000 feet after the waypoint is
passed. If, however, ATC only cleared the air-
craft to the crossing restriction, then the crew
must set 6,000 feet as the cleared altitude on
the MCP. In this latter case, the autopilot will
automatically transition through ALT CAP
mode into ALT HOLD at 6,000 feet, disen-
gaging VNAV in the process. When ATC
clears the aircraft to a higher altitude the crew
must set the new altitude on the MCP and re-
engage VNAV. Above 10,000 feet VNAV
commands the most economical thrust setting
for the climb. Each VNAV climb that is termi-
nated by an MCP-selected altitude lower than
the FMS-programmed cruise altitude causes an
automatic transition to ALT CAP, then to ALT
HOLD at the MCP altitude. When the aircraft
reaches the programmed cruise altitude at the
FMS-computed top-of-climb (TK) point,
VNAV PTH engages in conjunction with the
autothrottle SPD mode to maintain the most
economical cruise speed.

23

T/D

ECON cruise speed
A

VNAVPTH I

I A - A3 VNAV PTH

xyz
Figure 17. Typical VNAV profile and mode annunciations during descent from cruise to approach.

VNAV PTH is used throughout the cruise
phase of flight, until the FMS-computed top-
of-descent (T/D) point is reached (see figure
17). At the top-of-descent, VNAV PTH mode
adjusts its associated autothrottle to command
thrust in such a way to track the programmed
descent profile. Depending on winds aloft, the
autothrottle may reduce thrust to idle (IDLE
mode), hold a specific thrust (THR HOLD
mode), or add thrust (SPD mode). VNAV PTH
is used with SPD mode to decelerate prior to a
transition altitude (i.e., an altitude where a
speed change is required). In general, VNAV
uses a FMS-computed path to meet a
speed/altitude restriction at waypoint on the
descent profile. In cases where a strong
tailwind is present, pilots may extend spoilers
or speed brakes to slow the aircraft.
During VNAV operation, speed is commanded
by the FMS; the MCP speed display window is
blank. If ATC requires a speed that differs
from the FMS-programmed speed at any time
while VNAV is engaged, the pilot may engage
a speed intervention submode of VNAV to
achieve the desired speed without reprogram-
ming the FMS. Speed intervention is invoked
by pushing the MCP speed selector knob to
display the current airspeed in the MCP speed

display. The pilot may then adjust the airspeed
with the speed selector knob (see figure 15).
To revert to normal VNAV operation, the pilot
pushes the speed selector knob a second time
to blank the MCP speed display.
To use FL CH, the pilot first sets the new
cleared altitude on the MCP. The pilot then
presses the FL CH switch (see figure 15). As
soon as FL CH engages, the MCP speed dis-
play changes to the current airspeed. The pilot
should then check and adjust the speed as
appropriate. In contrast to FL CH, V/S is used
less often because of its capability to depart
from a set altitude. It may be used, however, in
situations where the pilot desires smooth level-
offs that might cause passenger discomfort if
left to VNAV or ALT CAP modes.
Other vertical modes may also be used at top-
of-descent. Pilots may use V/S to smooth the
initial descent; they may also use VIS at other
points in the descent where a gradual descent
profile is desired. FL CH affords the fastest
descent to a lower altitude; it is especially
effective in busy, low altitude situations.
Besides the major lateral and vertical modes
described here, several additional special-
purpose modes are available on the 757/767.
For example, the glideslope (G/S) and localizer

24

.

(LOC) modes enable the glideslope and
localizer beams to be intercepted on approach.

Summary of 757/767 automation
operation
The 7571767 glass cockpit automation pro-
vides autopilot modes to control the aircraft’s
lateral and vertical profile. Lateral profile
modes include LNAV, HDG SEL, and HDG
HOLD. Vertical profile modes include VNAV,
FL CH, V/S, and ALT HOLD. In addition,
ALT CAP mode engages automaticalIy when-
ever the aircraft approaches the MCP-selected
altitude, and smoothes the automatic transition
to ALT HOLD. As noted above, vertical modes
are, in actuality, combinations of an autopilot
pitch mode and an autothrottle mode; where
insignificant, these distinctions are eliminated
for parsimony.
Pilots use four major components in the glass
cockpit to control and monitor the 7571767
automation, in addition to standard flight
instruments. These components are the MCP,
CDUs, HSIs, and ADIs. The CDUs enable
information to be programmed into the FMS,
for use when the autopilot is coupled to the
FMS in LNAV and/or VNAV modes. Other
autopilot modes acquire MCP-selected target
values. In the next section, general classes of
modes are characterized.

Classes of modes
A mode, in general, is a manner of behaving
(ref. 71). In supervisory control systems, the
behavior referred to can be either that of a
display or input mechanism, or that of auto-
mation used to control the system. Modes
related to display or input mechanisms are
called “interface modes” or, using Degani et
al.’s classification, “formaddata-entry
modes;” modes that determine the behavior of
automation used to control the system are
“control modes.”

Formatldata-entry modes
Format/data-entry modes first arose in human-
computer interfaces; multiple interpretations

of the same keys were needed to support
expanding functionality. A boon to interface
designers, modes were used to group related
commands into a unit operated on as a whole
(e.g., enabled or disabled). Modes could “corre-
spond to a meaningful activity in the user’s
mind, such as ‘editing,”’ and thereby simplify
the user’s choices in a given mode (ref. 72, p.
440). Users, however, were not necessarily
convinced. Tesler, an advocate of modeless
interfaces (ref. 73), defined a mode as follows:

“A mode of an interactive
computer system is a state of
the user interface that lasts for
a period of time, is not associ-
ated with any particular object,
and has no role other than to
place an interpretation on
operator input (ref. 74, p.
659). ”

Modes nonetheless proliferated, and with them
a growing need to understand their associated
pitfalls. Mode errors-already identified as a
category of unintentional, erroneous slips of
action that occur when humans incorrectly
assess a situation, then perform an action
inappropriate for the actual situation (ref.
75)-took on new meaning as modal devices
(e.g., text editors) entered widespread use.
Humans sometimes lose track of which mode
of the device is currently active, then perform
an action inappropriate for the mode (ref. 76).
The vi text editor, with its “command” and
“insert” modes, is a popular illustration of
formaddata-entry modes (ref. 59). Another
example is the degreeshadians mode distinc-
tion found on calculators. Unlike the vi exam-
ple, the difference in behavior is not immedi-
ately evident: when a user inputs 3.14159, it is
displayed as 3.14159. However, the mode
affects the interpretation of 3.14159, once this
value becomes part of a trigonometric calcula-
tion; it also affects the correct interpretation of
the result.
In general, formatldata-entry modes succeed if
the user can always ascertain the state of the
system, and if actions available during the
mode are always relevant to the mode (refs. 74

25

and 77). Early studies on feedback and mode
usage include that of Monk (ref 78), who
showed that auditory feedback can help
reduce mode errors, and Sellen, Kurtenbach,
and Buxton (ref. 79), who examined the utility
of visual and kinesthetic feedback. Enduring
computer interface features such as menus and
dialog boxes were developed to constrain user
actions in a particular mode (ref. 80).

Control modes
The purpose of control modes is to provide
the human operator with options for control-
ling the behavior of automation. A given con-
trol mode, once engaged, varies or maintains a
certain set of parameters in a particular fash-
ion. The dynamic response of the controlled
system created when a control mode is
engaged is therefore a factor that occasions its
use. Automobile cruise control is an example
of a simple control mode. Control modes have
five important characteristics (figure 18). First,
a given control mode has specific engagement
conditions. The engagement conditions for a
mode encompass target values that must be set
so the mode can attain andor maintain them,
and the mode(s) that are currently in use. For
example, Flight Level Change (FL CH) mode
requires the pilot to enter an altitude target on
the Mode Control Panel (MCP) that is
different from the current altitude target.
Vertical Speed (VIS) mode engages if FL CH
is engaged and the autothrottle is engaged in
N1 mode.
Second, some control modes can be armed for
later automatic engagement. In such cases,
arming conditions govern when the mode can
be armed; engagement conditions dictate when
the mode will engage automatically. For
example, VNAV can be armed if a valid verti-
cal profile is programmed and the glideslope
is not captured. With VNAV armed, if a valid
MCP altitude target is entered and the aircraft
intercepts the programmed vertical profile,
VNAV engages automatically.
Third, a control mode has disengagement
conditions that govern when the mode disen-
gages; a mode may disengage when another

26

- CONTROL MODE CHARACTERISTIC-

Engagement Conditions

Arming Conditions

Disengagement Conditions

Control Properties

Modifications to Operation

Figure 18. Characteristics of control modes.

mode is engaged, or when critical target value
information no longer applies. For example,
the Lateral Navigation (LNAV) mode disen-
gages when Heading Select (HDG SEL) mode
engages. VNAV disengages if the pro-
g r a m e d vertical profile is no longer valid.
Fourth, a given control mode has characteristic
control properties that include the subsystems
used by or controlled by the mode, the spe-
cific set of parameters that the mode controls,
and the manner in which the mode controls
them. One mode may control the same set of
parameters as another, but it may use different
sources of information, and a different means
of controlling the parameters. These properties
are, in effect, the reason for including the
mode in a system’s automation suite-the
mode provides control properties that are
desirable in certain operational situations, and
are not provided by another mode. In addition
to the specific parameters that a mode controls,
the level of automatic control excercised over
the parameters also defines its control
properties.

Levels of automation
Historically, each new element of automation
and its enabling technology is added to the
previously existing automation without
replacing it. This design affords the human
operator the opportunity to disengage the
latest additions to the automation and revert to
a familiar manner of controlling system. It
also permits safe operation of the controlled
system should the new automation fail (ref. 8).

-

Today’s complex control automation typicaliy
follows suit, allowing human operators to
choose among several levels of automation
(figure 19). At low levels of automation, the
operator performs control tasks manually with
assistance from the automation. Higher levels
of automation enable the operator to input
desired system state values for the automation
to achieve and maintain. The highest levels of
automation essentially control the system
autonomously, while the operator monitors the
automation to ensure desired system per-
formance. Billings (ref. 8) views these levels as
a controland management continuum, similar
to the levels of supervisory control discussed
by Sheridan (ref. 9). As the level of
automation increases, direct operator control
decreases and monitoring responsibilities
increase (figure 19).

Higl

C
0
c.

E
0
LI a a
c
0

0) >
0
2

-

Controiied subsystems and parameters
In complex supervisory control systems, a
given system is comprised of several subsys-
tems. The control properties of a mode are
also characterized by the subsystems and
parameters that the mode controls. Modes
exist for controlling salient aspects of the per-
formance of each subsystem. In glass cockpit
aircraft, for example, three aspects (i.e., pitch,
roll, and thrust) must be controlled simultane-
ously to achieve the desired flight path.
Furthermore, several modes are available for
controlling each of these parameters at each
level of automation. Pilots can invoke a single
mode at a high level of automation that
integrates control over more than one of these
parameters (e.g., pitch and thrust) to reach a
desired altitude at a desired time. Alternatively,
they can use multiple modes concurrently to
control each

Autonomous n Oneration

Management by

l 2 z V Control

I Direct Manual
Control Lov

4- Increasing Control Increasing Monitoring +
Involvement Responsibilities

Operator Involvement

Figure 19. Levels of automation (adapted from Billings, (ref. 8)).

27

parameter separately at a lower level of auto-
mation to maintain, for example, a desired
altitude and airspeed.
Thus, the control properties of a mode can be
thought of as two-dimensional: one dimen-
sion corresponds to the parameters of each
sub-system that are controlled; the other
dimension corresponds to the level of automa-
tion. At high levels of automation, a single
mode can control more than one performance
parameter by automatically “slaving” another
mode for its own use. VNAV, for example,
routinely changes the autothrottle mode that
controls thrust as necessary for its pitch com-
mands to produce the vertical profile pre-
scribed by the information programmed in the
FMS.
Finally, a control mode is characterized by
allowable rnodiJications to operation that
human operators (or other automation) can
make while the mode is engaged. A mode may
have submodes that allow temporary specifica-
tion of target values different from those
programmed prior to engaging the mode. For
example, VNAV’s speed intervention submode
allows pilots to override the target speed
programmed into the FMS if the desired
airspeed differs from the programmed value.
Thus, submodes provide a way for human
operators to temporarily revert to a lower
level of automation in which more direct con-
trol of the system is possible. Submodes can
also refer to the automatic input of a default
target value in a situation where the current
input fails to meet specified criteria (e.g.,
envelope protection in the Airbus A320) (ref.
8 1).

Formaudata-entry modes for control
modes
The purpose of formaddata-entry modes is to
provide increased functionality of a system
while using the same input mechanism and
display space. The important feature of
formaddata-entry modes is that the same input
results in different behavior. In isolation,
formaddata-entry modes are reactive-nothing
happens until the operator performs another
action. Control modes, on the other hand, are

proactive in that they automatically transform
the controlled system.
Operator interfaces to control modes in com-
plex systems, however, routinely incorporate
formaddata-entry modes (e.g., to allow input
of target values, and configure displays for
monitoring the automation). This relationship
imparts a proactive quality to the formaddata-
entry modes. Mode errors related to
formaddata-entry modes can propagate to
create control problems unbeknownst to the
operator-erroneous inputs that the operator
would usually discover are immediately
honored by associated control mode. Thus,
while this research is concerned primarily with
control modes, the importance of formaddata-
entry modes should not be understated.

-

Mode structure
The characteristics of individual control
modes give rise to specific relationships
between modes. Each subsystem may have its
own set of modes, and therefore the modes of
a given subsystem can interact with the modes
of another. Degani et al. (ref. 59) use the term
mode structure to refer to the hierarchy of
modes in a system, the transitions among
modes and associated transformations in the
controlled system, and the interactions
between modes of different sub-systems. The
hierarchy of modes in a system derives from
the characteristics of the individual modes and
the level of automation at which they operate.
Interestingly, this concept of mode structure is
little changed from that embraced by early
research on formaddata-entry modes: “The
natural relationship among these modes gives
the space of modes its structure, which governs
the allowable transitions between the various
modes (ref. 72, p. 440).”

.

Mode transitions
Mode transitions are an important facet of
mode structure. Degani et al. (ref. 59) state
that a mode transition can result from three
types of input: manual, automatic, or auto-
matic/manual. A related view of mode transi-
tions is offered by Vakil et al. (ref. 81). They

28

.

also identify three types of mode transitions:
commanded, uncommanded, and auto-
matic/conditional. The difference appears to
be that Degani et al. characterize the inputs
required to transition to the mode, while Vakil
et al. characterize the transition itself.

For purposes of this research, there are four
types of mode transitions. First, manual mode
transitions are those that can only be directly
and immediately effected by the human
operator. For example, a transition to HDG
SEL can only occur directly as a result of a
pilot pressing the HDG SEL engagement
switch. Second, automatic mode transitions are
those that only occur automatically as a result
of some target state being attained. For exam-
ple, a transition to Altitude Capture (ALT
CAP) mode to capture a set target altitude only
occurs automatically; no engagement switch
exists for this mode.
A third type of mode transition is
automatidmanual. Automatic/ manual mode
transitions are those that can occur either as a
result of pilot input, or attainment of a specific
target state. An example is a transition to
Altitude Hold (ALT HOLD) mode, which
occurs automatically following the altitude
capture maneuver, or can be effected immedi-
ately by the pilot to hold the current altitude
by pressing the ALT HOLD engagement
switch.
Fourth, conditional mode transitions refer to
modes that can be armed for later engagement,
or engaged immediately if the target state
conditions are already met at the time of input
from the human operator. An example is
LNAV, which can be armed to intercept the
lateral profile programmed in the FMS, or can
engage immediately if the aircraft happens to
be on the programmed profile already when
the pilot presses the mode switch.
For completeness, a fifth type of mode transi-
tion is one that cannot occur because the
engagement conditions for the mode are not
met (or the disengagement conditions for the
current mode are not met), regardless of
whether the human operator attempts to
engage the new mode. For example, FL CH

will not engage unless the pilot first enters an
MCP target altitude different from the present
altitude; attempting to engage FL CH without
first setting a new altitude constitutes a
(benign) pilot error.

Base-modes and macro-modes
Vakil et al. (ref. 81) provide an additional per-
spective on mode structure by distinguishing
between base-modes and macro-modes. Base-
modes simply maintain an invariant set of tar-
gets, while macro-modes consist of a linked
sequence of base-modes. Because each base-
mode in the macro-mode has its own set of
targets, the macro-mode, in effect, has a set of
targets which vary over the course of the its
operation. They offer the autoflight system
Autoland sequence as an example of a macro-
mode, in which automatic transitions from a
vertical mode, to Glideslope capture, to Flare,
and finally to Rollout occur. Another example
is a standard altitude capture maneuver, in
which the aircraft transitions from the mode
used to change altitude, to ALT CAP, and
finally to ALT HOLD at the desired altitude.
Sherry, Youssefi, and Hynes (ref. 82), in their
specification of a formalism for the develop-
ment of next generation automation, provide a
related view. They first define primitive modes,
then construct supermodes from the primitive
modes. This approach holds promise for
designing mode structures that are mathemati-
cally consistent in their behavior-one
potential solution to automation surprises.

Cognitive factors impacting mode
usage
Mode structure affects the cognitive demands
placed on operators of complex systems, and
therefore influences the performance of
human operators using modes of automation.
The more complex and highly automated the
task environment is, the more susceptible
operators are to mode errors (ref. 25). Four
cognitive factors affect the performance of
human operators of complex systems: knowl-
edge factors impact knowledge use in various
problem solving contexts; strategic factors
drive tradeoffs in the face of changing objec-

29

tives, limited time, and high risks; attentional
dynamics affect situation awareness and effec-
tive attention allocation in high workload peri-
ods; and, finally, bounded rationality leads to
satisficing behavior that makes sense to
humans in light of the other factors (ref. 11).
The tasks involved in the selection and use of
automation modes in complex systems pro-
vide examples of these factors at work. In
some situations, the mode management task
can cause demand-resource mismatches that
lead to mode errors.

Mode usage tasks
When an operational objective is communi-
cated to the operator, the first task is to select
a mode from the modes available to accom-
plish the objective. The operator next pro-
grams or configures the automation with
information required by the selected mode,
and engages the mode. Upon mode engage-
ment, the operator monitors the operation of
the automation to ensure that the desired mode
engages properly, and that the behavior of the
controlled system meets expectations. Some
modes require the operator to arm the mode,
then monitor the conditions for automatic
mode engagement. In certain situations, the
operator may meet an operational objective
by adjusting the operation of a mode that is
already engaged by reprogramming target Val-
ues required to use the mode, or by engaging a
submode of the mode that provides the
required control behavior.

Knowledge factors
To use modes effectively, operators must
understand how a particular mode should be
used in conjunction with other modes, and the
type of control needed in the current operat-
ing context. A clear understanding of mode
structure is critical to an operator’s ability to
properly adjust the operation of a given mode,
effect a transition between modes, or monitor
mode transitions effected automatically by the
automation. In complex systems, such knowl-
edge requirements are a significant addition to
the operator’s task (ref. 11).

*

*

In complex systems, some subsystems are
highly automated-much more so than other
subsystems. The FMS, for example, requires
an disproportionate increase in the depth of
knowledge required to use it (refs. 67 and 58);
hence, operators may develop “buggy” or
incomplete mental models of how this auto-
mation functions (refs. 69 and 70).
Operators must also be aware of the complete-
ness and accuracy of their knowledge. Because
their knowledge of FMS function is often
incomplete or inaccurate, pilots are known to
develop a small set of reliable strategies,
involving a few modes-which may not be
adequate in critical or abnormal situations (ref.
11). Other knowledge factors are inert knowl-
edge, when facts about mode structure are
known but cannot be applied in actual
operating contexts (ref. 69), and oversimplifi-
cations that result when heuristics are used
inappropriately (ref. 83).

30

High

5
E“
3

3

c

0 c

r
0

Q, >
-

Low

operational
objective

I

operational
objective

Time

Figure 20. Operation of modes at different levels of automation.

Strategic factors
When selecting a mode, operators must con-
sider the urgency with which a desired system
state must be achieved, and the need to achieve
safe and efficient system performance.
Operators are often faced with tradeoffs-the
penalty for not meeting a particular opera-
tional objective may be greater than’the reward
for meeting a competing objective. For exam-
ple, modes that provide a high level of auto-
mation control the system more precisely and
efficiently than modes at lower levels of auto-
mation. However, high-level modes ordinarily
require more time to prepare for use (figure
20). Eldredge et al. (ref. 58) found the use of
high levels of automation provided by the
FMS detrimental in high-workload situations.
If sufficient time is not available to program
the automation, or operational objectives are
likely to change in the near future, operators
typically sacrifice the improved efficiency
offered by a high level of automation for more
direct control at a lower level of automation
(ref. 69).

Another type of strategic factor plays a role
in situations where the operator is responsible

for the safe operation of the system, but has
transferred authority to high-level automation.
Woods et al. (ref. 11) term such difficulties
“responsibility-authority double binds.”
Operators must correctly adapt ambiguous or
inadequate guidelines for using the automa-
tion to the situation at hand (ref. 84), rather
than permitting high-level automation to mis-
handle the situation. Pilots can be surprised by
the automation failing to take expected
actions, or taking uncommanded actions (ref.
70). Pilot strategy also includes “tricking” the
FMS to achieve, for example, an early VNAV
descent. Wiener (ref. 67) warns: “It does not
speak well for automation that pilots of a
modem airliner must deliberately enter incor-
rect data into a sophisticated computer to
achieve a desired objective @. 171) .”

Attentional dynamics
Attentional dynamics encompass “the factors
that operate when cognitive systems function
in dynamic, evolving situations (ref. 11, p.
67),” including workload management and
control of attention. Many processes, includ-
ing directed attention, perceptual processes,
mental simulation, and mental bookkeeping,

31

are referred to generally as situation awareness
(ref. 70). In complex task environments where
modes are present, the term mode awareness
has come to refer to an abstract level of vigi-
lance and acumen required to manage the
operation of multiple modes concurrently with
other tasks. To maintain mode awareness,
pilots of glass cockpit aircraft must know
“who/which system is in charge of controlling
the aircraft, what the active target values are,
and whether they can anticipate the status and
behavior of the FMS (ref. 69, p. 36?).” In
short, they must be able to answer Wiener’s
(ref. 67) three questions: “What is it doing
now?,” “Why is it doing it?,” and “What’s it
going to do next?”
Clumsy automation often increases workload
at times when it was already high, and reduces
workload at times when workload is typically
light (ref. 67). Pilot workload becomes

I I I
I I

operational
I
I

I
I I
I I

- objective I

2 1 c

especially high at low altitudes near airports.
Because pilots must meet objectives concern-
ing both the lateral and vertical profiles, the
selection and use of one mode must be per-
formed simultaneously with another mode.
This can create numerous attentional conflicts
that may lead to a loss of awareness about the
operation of the automation. For example,
figure 21 shows that configuring one mode
can compete with monitoring another (at time
t,), two time t2), or a selection decision for one
can compete with monitoring another (at time
t3). Operators can also become fixated on one
element of the automation at the expense of
other attentional demands (such as monitoring
and collision avoidance)- pilots go “head
down,” for example, to program the FMS
when they should be attending to other tasks,
such as monitoring traffic (refs. 19 and 67).

-

n -
CI f monitorladjust
0
-I

I I I
I I I
I I I
I I I

object ive

I I

t l t 2
I

t 3
Time

Figure 2 1. Setup/Engagement or monitoring/adjustment of one mode can compete for attention with
another mode during high workload periods.

32

.

Attentional factors-are compounded by auto-
mation. Automation is often machine-
centered, leading researchers to characterize -it
as “strong and silent”; no increase in obsew-
ability accompanies an increase in automation
(ref. 70). The 1985 incident involving a China
Airlines 747 (ref. 65) is an example of strong
and silent automation. The aircraft experi-
enced a loss of power in its outer right engine,
which the autopilot compensated for-until it
could no longer. The aircraft then plummeted
31,500 feet and sustained serious damage
before the crew could recover, because the
autopilot failed to alert the pilots that it could
no longer compensate for a loss of engine
power. Norman (ref. 85) suggests this example
shows automation is not powerful enough-if
it were made more powerful, perhaps it could
provide the feedback necessary to better
inform operators about its control capabilities.

Combined effects: bounded rationality
Bounded rationality-the idea that human
problem solvers possess limited cognitive
capabilities-leads to “satisficing” behavior
in which humans do what seems reasonable in
light of their knowledge, objectives, and lim-
ited attentional resources (refs. 86 and 87).
Indeed, rationality must be bounded-to bring
all potentially relevant information to bear
would be overwhelming. Knowledge factors,
strategic factors, and attentional dynamics
interact to determine which resources are
brought to bear on mode selection and use in a
given situation. For example, the amount of
time required to configure a mode for use is a
function of the complexity of the program-
ming task; the operator must understand the
characteristics of the mode and decide whether
attention can affordably be allocated to its use
in the face of changing objectives. Knowledge,
strategic, and attentional factors also impact
operator decisions to decrease the amount of
attention they need to devote to monitoring
by opting for a lower level of automation
when they are anticipating a period of high
workload (ref. 11).

Automation modes can also discretize aspects
of the otherwise continuous operation of the
controlled system. For example, in the
Bangalore crash (ref. 88), the pilots inadver-
tently engaged an Airbus A320 mode called
Open Descent, which provides no altitude
protection and led to the crash. Open Descent
mode engaged automatically when the pilots
entered a lower target altitude when the aircraft
was already within 200 feet of the MCP alti-
tude. If the pilots had entered the new target
altitude when the aircraft was 205 feet from
the set altitude, the accident might not have
occurred.
A combination of factors might have played a
role in this disaster; indeed, a detailed analysis
of the accident highlights several factors (ref.
56): the captain was conducting a check flight,
and the proper division of labor between crew
members was not followed; the trainee pilot
disengaged one, not both, flight directors, then
became confused and fixated on the failure of
the autothrottle to leave idle descent (once he
realized he was in that mode); and, the crew
relied on an A320 envelope protection feature
to recover, but a time delay designed into the
system caused the protection feature to engage
too late.

Summary
Modes are useful because they provide control
options to the human operator. However, the
number of available modes, along with possi-
ble interactions between modes that occur
when several modes can be used in combina-
tion, increases the potential for mode error. A
range of possible mode configurations makes it
easier to lose track of which modes are cur-
rently controlling the system, especially since
the same controls and displays are often used
differently depending on the modes in use.

The use of a given mode encompasses knowl-
edge, attentional, and strategic factors
depending upon its implementation. Super-
vising the concurrent operation of multiple
modes, besides resulting in increased work-
load, can lead to misunderstandings about how

33

or when a particular mode should be used in
conjunction with other operational modes, and
misunderstandings about the type of control
needed in a given situation. In situations where
the operator must adjust the operation of a
given mode, effect a transition between modes,
or monitor mode transitions effected
automatically by the automation, several of
these factors can conspire to cause errors.
Mode management is error-prone; therefore,
operators supervising the operation of multiple
modes to control complex systems are likely

to benefit from operator’s associates, context-
sensitive displays, and intelligent tutoring
systems-three important applications of
intent inferencing.
This chapter provided background on modes
in complex systems, which must first be under-
stood in order to design a methodology for
correctly predicting and interpreting operator
actions. An understanding of modes is espe-
cially important for developing models suit-
able for supporting intent inferencing. The
OFM-ACM is a model designed to represent
knowledge required to effectively manage the
operation of multiple modes. The OFM-ACM,
along with the other elements of the GT-CATS
activity tracking methodology and architecture
is the subject of the next chapter.

34

methodology indirectly predicts when a mode
transition is imminent, and to which mode. 4. A Methodology and Architecture

for Activity Tracking

Introduction
This chapter describes the GT-CATS activity
tracking methodology, along with a computer
architecture for implementing the methodol-
ogy to track operator activities in real time. An
activity is simply something the operator does,
expressed at any level of abstraction. Activity
tracking is a machine capability analogous to
the human supervisory controller’s task of
tracking the status and behavior of the con-
trolled system, and anticipating future changes
(ref. 11) Activity tracking entails predicting
operator activities, explaining operator
actions, and flagging possible operator errors,
in light of the status and behavior of the con-
trolled system and anticipated future changes.

Following an overview of the methodology,
this chapter describes the components of the
methodology. It then describes an architecture
that connects these components to provide
activity tracking capabilities. Finally, the
chapter compares the GT-CATS methodology
and architecture to related intent inferencing
research.

Overview of the GT-CATS methodology
The GT-CATS methodology has four
elements (figure 22). First, the methodology
hypothesizes the next set of activities the
operator will perform. It predicts one way of
using of using the available control automation
in the current operational context; specifically,
the methodology predicts which mode(s) the
operator is likely to select, and when, to
achieve a desired system state. It also predicts
how and when the operator will setup, engage,
monitor, and adjust the selected mode. The
methodology produces hypotheses at multiple
levels of abstraction, in terms of high level
activities (i.e., mode selections, tasks, and
subtasks), as well as individual actions. By pre-
dicting when a new mode will be used, the

- ACTIVITY TRACKING

1. Hypothesize operator activities

2. Explain expected operator actions 1
“REVISION PROCESS‘

3. Explain unexpected operator actions,

or identify them as possible errors

4. Issue alerts for errors of omission

Figure 22. Elements of activity tracking.

The second element of the GT-CATS meth-
odology is to explain operator actions that
support its hypotheses. By confirming that an
expectation is met by an actual operator
action, GT-CATS produces an explanation for
the action. GT-CATS’ produces explanations
at multiple levels of abstraction, in the
manner of the initial hypothesis.

Automation that offers the human operator
several mode choices for accomplishing a goal
makes explaining an operator’s choice of
modes more difficult. Operators may switch
between modes at will, seeking to exploit some
perceived advantage of the new mode. The
third element of the GT-CATS methodology,
called the “revision process,” addresses this
problem. The name refers to how GT-CATS
revises hypotheses about the mode it expects
the operator to use, and explains “unex-
pected” actions as supporting an alternative
mode that is also applicable in the current
situation. This capability is vital to under-
standing operator activities in multi-modal
supervisory control environments.

To explain unexpected actions, GT-CATS’
revision process uses updated information to

35

assess whether the operator's mode choice is
valid; if it is, GT-CATS explains the action as
supporting the alternative mode. The second
function of the revision process is also
extremely important: detecting possible
operator errors. If an unexpected action can-
not be explained via the revision process, GT-
CATS identifies the action as a potential error.
The fourth element of the GT-CATS activity
tracking methodology is to identify predicted
actions that have not been detected or super-
seded by alternative actions. Expectations for

designed to note the possibility that the opera-
tor has forgotten a required action, or is
unaware that a mode change is required in a
particular situation.

The GT-CATS methodology is predicated on
the additional requirement that the predictions
and interpretations of operator actions should
be produced in real time. A real-time under-
standing is vital because intelligent tutors and
aids must keep up with the operator-automa-
tion interactibn as it unfolds.

operator actions that have not been met, and
have not been superseded by actions related to
an alternative mode, suggest a possible error of

Components of the GT-CATS
methodology

omission. Thus, the GT-CATS meth'odology is

7 GT-CATS \

Operator Model

Figure 23. Knowledge representation in the GT-CATS methodology.

The GT-CATS methodology uses four knowl-
edge representations that are linked through
processing (figure 23). The first is a static
task-analytic model of operator activities. The
second is an instantiation of the task-analytic
model in a computational form that is
dynamically annotated during run time. The
methodology uses this instantiation to inter-
pret the current operator actions. During
processing, knowledge about the current status

of activities is added to the computer
instantiation of the model to produce expecta-
tions. The computational operator model is
also critical for producing explanations,
because the methodology explains actions at
the levels of abstraction represented in the
model. The remaining two knowledge repre-
sentations provide current knowledge about
the constraints imposed by the environment
and the state of the controlled system.

36

Sub-
Phase phase Function Selection 1 Task task 1 Action I i Sub- I I Mode I

I i-I
Figure 24. Generic structure of the OFM-ACM.

Representing the operator’s task: The

Knowledge about the operator’s task is repre-
sented by an explicit, task-analytic model
based on the OFM. Called an Operator Func-
tion Model for systems with Automatic Con-
trol Modes (OFM-ACM), the model specifies
how operators use automation modes to
achieve desired performance from the con-
trolled system. The OFM-ACM imparts an
expIicit mode orientation to the O m . Like the
OFM, the OFM-ACM is structured as a
heterarchical-hierarchical network of nodes
that represent operator activities at relevant
levels of abstraction (figure 24).
In the hierarchical dimension, the OFM-ACM
decomposes operator functions that must be
performed to meet operational goals into the
modes that can be used to perform them, and
in turn decomposes each mode into the tasks,
subtasks, and actions required to use the mode
depending on the situation. As with the OFM,

OFM-ACM

such a decomposition is referred to as an
“activity tree.” The OFM-ACM’s structure is
also heterarchical like the OFM. The heterar-
chy is important for representing multiple
functions that can be performed concurrently,
and because the use of a particular control
mode often allows or requires operators to
perform tasks or subtasks concurrently.
The OFM-ACM enhances the OFM heterarchy
by including an explicit hierarchical decom-
position of operator activities for each phase
of system control in the manner of Jones et al.
(ref. 50) and Thurman and Mitchell (ref. 89).
This enables operator control responsibilities
to be represented explicitly in systems whose
operation is generally thought of as consisting
of several mutually exclusive phases, each of
which requires operators to undertake a par-
ticular set of control functions. This structural
feature of the OFM-ACM allows differences in
how a mode is used to perform a required
function in a given phase to be explicitly
represented.

37

subtask action

I

set target value on
Mode Control Panel set target value

set u p/engage
mode X

- push mode X
engagement switch

confirm mode X
engaged

I determine new desired I

engage mode X

- target value I
c

set new target value on
Mode Control Panel

confirm new desired

adjust target value

monitor/adjust target value set
mode X

monitor mode X
engaged annunciator

monitor mode X I monitor mode X

1 performance profile I

Figure 25. Generic decomposition of mode selection X into “setup/engage” and “monitor/adjust” task
subtrees.

The structure of the OFM-ACM provides a
theoretical framework for organizing knowl-
edge about the operator’s task. A control
function is decomposed into the mutually
exclusive mode selections available for per-
forming it, each representing a control option
available to the operator. Each applicable
mode is decomposed into task “subtrees” that
represent a task, its subtasks, and the support-
ing actions required to use the mode. For
modes that are engaged manually, one task
subtree commonly represents mode setup and
engagement activities; a second represents
monitoring and adjustment activities. A
generic view of the task subtrees used in the
OFM-ACM structure is depicted in figure 25.

Another important structural feature of the
OFM-ACM is that activities above the mode
selection level must be uniquely determinable
(figure 26); activities above the mode selection
level must be structured such that there is no
ambiguity as to when the operator is expected
to perform these activities. This is because GT- -
CATS must first be able to isolate the mode
choices that the operator has in a given situa-
tion, in order to expect and explain operator
mode usage. GT-CATS must be certain about
the high-level activities that should be per-
formed in order to determine the set of mode
selections applicable to the situation.

-

38

.

Phase

I(

phase Sub- I Functio 1 Selection Mode

3
Sub-

Task task Action

I

I
Figure 26. Functions are uniquely determinable; mode selections are uncertain.

Like the OFM, the OFM-ACM is generalizable
with respect to the number of levels of
abstraction required to adequately represent
knowledge about the operator’s task. GT-
CATS’ processing scheme, however, uses the
mode selection level as a “pivot-point” for
resolving uncertainty. In determining whether
an unexpected action can be explained as sup-
porting an alternative valid mode, the revision
process refers to occurrences of the action
that can support the possible set of modes.
From a top-down perspective, the mode selec-
tion level is the first level of abstraction at
which uncertainty is encountered because
several modes may be applicable; from a bot-
tom up perspective, the mode selection level
is the first level at which uncertainty can be
resolved because each mode selection corre-
sponds directly to a mode that must be
engaged in the controlled system if the opera-
tor has performed an action that supports a
task related to using that mode.

The contents of the individual nodes that
comprise the OFM-ACM activity trees are also
important to the GT-CATS methodology.
Each node encapsulates knowledge about the
activity (figure 27). Basic knowledge includes

the name of the activity, an identification
number, and the level of abstraction at which
the activity resides. A reason for the activity
that reflects its inclusion in the OFM-ACM at
the present location is also included for refer-
ence. This reason provides additional knowl-
edge about the activity that might be useful for
an intelligent tutoring or aiding system.
Knowledge about the type of activity is also
contained in a node (see figure 27). This
information distinguishes manual, perceptual,
cognitive, or verbal operator actions. Although
the actions that the GT-CATS methodology
can track computationally are limited cur-
rently by affordable technology to detectable
manual actions, the methodology is also appli-
cable to tracking perceptual, cognitive, or ver-
bal actions. The task subtrees shown earlier are
structured to represent activities of all of these
types; the GT-CATS methodology includes
them because such activities are important for
the operator to perform in monitoring the
behavior of the automation and controlled
system. Although the methodology cannot
explain perceptual, cognitive, or verbal actions
because they are undetectable, by including
them, the methodology can expect when such
activities should be performed.

39

name: perform function A
identifier: 2021
node-type: function
uplinks:
function)
down-links: 3022, 3023, 3024 (identifiers of mode selections
into which this function is decomposed)
reason: function A should be performed to bring state variable
X within limits
conditions: state variable X outside limits
agent: (for low level tasks/subtasks/actions allocated to a
specific crew member)
activity-type: (for actions; manual, perceptual, cognitive, or
verbal)
automation mode: (for mode selections; indicates
automation mode corresponding to the mode selection)

1007 (identifier of subphase that includes this
-

Figure 27. Knowledge contained in an OFM-ACM activity node.

Nodes in the OFM-ACM also represent knowl-
edge about the agent responsible for per-
forming the activity (see figure 27). The GT-
CATS methodology is oriented toward systems
where the “operator” may actually be a team
of operators; this is the “crew” in GT-CATS.
In such cases, knowledge about task allocation
among the crew members is crucial for under-
standing human-automation interaction. With
this knowledge, an action appropriate for a
given situation may be identified as a depar-
ture from operational guidelines if performed
by the wrong member of the crew.

Finally, each node has conditions that specify
the operational context in which the operator
is expected to perform the activity (see figure
27). The conditions in a node consist of a set
of “context specifiers.” Context specifiers
play a critical role in the GT-CATS methodol-
ogy. They link dynamic context knowledge
from the representations of the environment
and controlled system to knowledge of the
operator’s task represented in the computa-
tional instantiation of the OFM-ACM (figure
28).

-

-

40

- GT-CATS

Controlled 1

Figure 28. ‘The central role of coniext
specifiers.

e
n

-

Context specifiers are activated based on the
representations of the controlled system and
environmental constraints. An individual con-
text specifier summarizes the relationship
between a particular aspect of the state of the
controlled system and an environmental con-
straint. A generic example of this is shown in
the conditions in the OFM-ACM activity node
in figure 27: the state variable X, when related
to constraints on its value imposed by the envi-
ronment, does not meet the constraints (i.e.,
the value of X is “outside limits”). The value
of using context specifiers to condition when
an operator is expected to perform some
activity is shown by this same example.
Regardless of the actual value of the state vari-
able X (which is dynamic), and the particular
environmental constraint that binds it (which is
also dynamic), the resulting context specifier
takes a static form which can be used as a con-
dition for expecting the activity as modeled in
the OFM-ACM.
The conditions contained in activity nodes in
the OFM-ACM may consist of multiple

context specifiers. The group of context speci-
fiers used as conditions in a given activity
node together reflect the relationship between
multiple state variables and environmental
constraints. Further, the GT-CATS methodol-
ogy allows that the conditions in a node may
consist of two groups of context specifiers. If
either one group or the other is present, the
operator is expected to perform the repre-
sented activity.
The conditions in the OFM-ACM are special-
ized for activities at each level of abstraction
(figure 29). Generally, high-level activities
have conditions comprised of context specifi-
ers that relate general environmental knowl-
edge to general state knowledge to express the
current relationship between the goals of the
operator and the state of the controlled system.
Conditions at the mode selection level are
comprised of context specifiers that reflect the
state of the control automation vis a vis the
preferred control mode (figure 29). Nodes
that represent mode selections in the OFM-
ACM also contain an additional piece of
knowledge: the corresponding automation
mode that should be engaged if the operator
has selected the particular mode. This knowl-
edge is specific to the mode selection level of
the OFM-ACM, and is vital to the revision
process.
Below the mode selection level, conditions are
constructed from context specifiers that relate
specific knowledge about the state of the
automation to specific knowledge of environ-
mental constraints. Context specifiers of this
sort are used to identify tasks and actions rele-
vant to the preferred mode selection that pro-
duces the required response in the controlled
system (figure 29).

41

automation programmed;
automation not in mode X

state variable T exceeds value T i ;
state variable X outside limits c

target value X on mode
control panel outside limits

Figure 29. Generic examples of context specifiers with different characteristics as conditions in the
OFM-ACM at different levels of abstraction.

The context specifiers that serve as conditions
on activities in the OFM-ACM are also impor-
tant for specifying procedural or concurrent
activities. Concurrent activities have conditions
that include the same, or similar, context speci-
fiers. Activities that comprise steps in a proce-
dure have as conditions context specifiers that
reflect the effects of earlier steps in the proce-
dure. For example, the “setup/engage” and
“monitor/adjust” tasks shown in figure 25
form a procedure; the “setup/engage” task is
followed by the “monitor/adjust” task. In this
case, the conditions under which the
“monitor/adjust” task is relevant reflect the
fact that the “setup/engage” task has been
performed (i.e., the automation is now in
mode X).
To summarize, context specifiers form the
conditions in the nodes of the OFM-ACM that
indicate when an activity is expected. Knowl-
edge about the reason for the activity con-
tained in each node, noted above, essentially
states why the activity is preferred under the
conditions designated by context specifiers in
the node. The fidelity of the context specifiers
that comprise each node’s conditions affects

the methodology’s activity tracking capabili-
ties. The context specifers that serve as condi-
tions must specify the operational context in
which the activity is appropriate to afford
unambiguous expectations.

Representing the state of the controlled
system: The state space
The GT-CATS state space encapsulates all
relevant knowledge about the state of the con-
trolled system. This includes the state of the
controlled system, as well as the state of the
control automation, as shown in figure 30. The
state space is updated dynamically to reflect
changes in the state of the controlled system.
The fidelity of the state space is defined by the
granularity of the state knowledge (Le., how
detailed the representation is), along with how
frequently it is updated. The state space must
be updated frequently enough to accurately
reflect current state information, in order to
produce con text specifiers that accurately
portray the current operational context of the
system.

-

42

.

- STATE SPACE

system state
variables

controlled 7
control automation

state variables

engaged modes

target values

1 programmed I information

Figure 30. GT-CATS’ state space knowledge
representation.

Representing environmental constraints:
The Limiting Operating Envelope
“For realistically complex problems there is
often no one best method; rather, there is an
envelope containing multiple paths each of
which can lead to a satisfactory outcome (ref.
11, p. 16).” In the GT-CATS methodology,
the structure of the OFM-ACM represents
knowledge of these paths. An analogous con-
cept is applicable to dynamic constraints
placed on the operation of the controlled sys-
tem by the environment; these constraints
define an envelope in which the system must
operate. The GT-CATS methodology terms
this representation the “Iimiting operating
envelope.” The limiting operating envelope
(LOE) is constructed in a manner similar to
that of the space of feasible solutions in the
field of computational optimization. Each
environmental constraint is imposed on the
space of possible system operations, and the
limiting constraints are identified. This set of
limiting constraints defines the space of feasi-
ble operations of the controlled system.

The GT-CATS LOE summarizes the con-
straints placed on a controlled system derived
from safety concerns, regulatory agencies, the
operating organization, and the capabilities of
the controlled system itself. Assuming a well-
trained and motivated operator, the constraints

on system operation represented by the LOE
define operator objectives. The LOE is
dynamic, because the GT-CATS methodology
is concerned with systems in which the state of
the system and the goals of the operator are
dynamic. When the constraints change, the
LOE representation must change to reflect the
new constraints.
The GT-CATS LOE is therefore designed with
two distinct elements. The first element repre-
sents the operator’s goals and environmental
constraints as far into the future as they are
known, expressing them as a series of “limit
states” to & attained. A limit state is simply a
collection of state values that reflect the goals
to be achieved. As the “active limit state” is
attained, the LOE’s binding constraints
become those reflected in the next limit state,
and so on, as system operation progresses (see
figure 31).
The second element of the LOE represents
any temporary modifications to the active
limit state; this knowledge, when applicable,
effectively ovemdes portions of the active
limit state such that a short-term limit state
takes precedence in constraining system
operation. A short-term limit state is expressed
as a set of state values in the LOE. Only some
of the state values in the short-term limit state
may be important in representing the short-
term goal. The active limit state constrains all
aspects of operation except for those con-
strained by valued parts of the short-term
limit state representation (i.e., the short-term
limit state can override all or some of the cur-
rently active long-term limit state. The LOE
may contain redundancies where the short-
term limit state specifies constraints on opera-
tion that are also specified by the active limit
state. Figure 31 illustrates this principle. In
figure 31 the active limit state calls for the
value of state variable V to be V2, while the
short-term limit state specifies that the value
of V should be V*. Thus, the value V2 is over-
ridden by the value V* specified in the short-
term limit-state, and all other values in the
active limit state still reflect current goals.

43

7 LIMITING OPERA TING ENVELOPE 7

LJ v = V'

Z = C n
V = Vn

Figure 31. A generic LOE. The first limit state has been attained; the second limit state represents is
the active limit state. The value V* in the short-term limit state representation overrides the value
V2 in the active limit state.

The LOE representation is used to supply
knowledge critical for determining the current
operating context, and is therefore subject to
requirements that affect its utility for generat-
ing context specifiers. Because the context
specifiers are derived from the LOE and the
state space, the knowledge in the LOE is speci-
fied at the same fidelity and at the same level
of abstraction as the knowledge in the state
space. Thus, state space knowledge can be
compared with knowledge in the LOE to
activate context specifiers.

The Dynamically Updated OFM-ACM
In the GT-CATS methodology, a computa-
tional operator model is derived directly from
the OFM-ACM, as shown above in figure 23.
The Dynamically Updated OFM-ACM (DUO)
is a computational instantiation of the OFM-
ACM that serves the dual purposes of repre-
senting the knowledge contained in the OFM-
ACM and representing the current operator
interaction with the control automation. DUO
contains all of the knowledge specified by the
Om-ACM, and dynamically annotates it with
knowledge to support real-time activity
tracking.

When the OFM-ACM is instantiated in DUO,
nodes in the OFM-ACM become computa-
tional objects, with slots to hold the descriptive
knowledge about the activity represented by
the node, as well as the conditions knowledge.
In addition, a node in DUO contains slots to
hold knowledge about the status of the activity
in the current operational setting, and the his-
tory of the activity's status (figure 32). The
status of the activity node reflects its relevance
to the activity tracking process at the current
time. The history of the activity node is a time-
stamped record of the status of the node over
the course of system operation.
The instantiation of the OFM-ACM in DUO
also requires that activities at the action level
that can support multiple tasks must be repre-
sented uniquely for each task. The GT-CATS
methodology seeks to disambiguate actions
with multiple purposes when producing
expectations and explanations. When generat-
ing expectations, the methodology seeks to
determine the precise activities at each level of
abstraction that are preferred in current oper-
ating context. An action that supports several
tasks or modes is represented as a unique
instance of the action. This enables any

~

44

name: perform function A
identifier: 2021
node-type: function
up-links: 1007 (identifier of subphase that includes this function)
down-links: 3022. 3023, 3024 (identifiers of mode selections into which this function
is decomposed)
reason: function A should be performed to bring state variable X within limits
conditions: state variable X outside limits
agent: (for low level tasks/subtasks/actions allocated to a specific crew member)
activity-type: (for actions; manual. perceptual, cognitive, or verbal)
automation mode: (for mode selections; indicates automation mode corresponding
to the mode selection)

I status: inactive
I history: t l : inactive; t2: active; t3: inactive; t4: active; t5: inactive

Figure 32. Knowledge about the status and history of the activity is added when the OFM-ACM is
instantiated in DUO.
differences in the operational context in
which the action should be expected to be
represently explicitly, differentiating the
action from other instances of the same
physical action. Further, different agents may
be responsible for the same action depending
on the operational context and the high level
activities it supports; here the responsible
agent differentiates one instance of the action
from another.
When explaining a detected operator action
that was expected, GT-CATS links the
detected action with an action in DUO that
has as its parent activities a task and mode
selection that explain the action (figure 33).
Similarly, when determining whether an unex-
pected action can be explained, or might be an
error, the methodology uses the revision proc-
ess to determine if another instance of the
action in DUO supports a task and mode that
can explain the action. Thus, representing

actions explicitly for each task in the OFM-
ACM enables DUO to disambiguate actions
that can support multiple tasks.

The GT-CATS methodology uses a processing
scheme that updates DUO with each update to
the state space and LOE. On each processing
cycle, the state space and LOE are used to acti-
vate a set of context specifiers. The processing
cycle assigns the status “active” to nodes in
DUO whose conditions are a proper subset of
the current set of active context specifiers; the
processing cycle assigns the status “inactive”
to nodes not meeting this criteria. If the status
of a node changes, GT-CATS updates the
node’s history list. At the end of the process-
ing cycle, active nodes represent activities that
are expected at that time; inactive nodes are
not currently expected. Thus, the processing
scheme uses DUO to maintain a dynamic rep-
resentation of expectations about operator
activities.

45

mode control panel

setuplengage
mode X

I
;J

I monitor/adjust

same physical
control action

-

Figure 33. By representing actions uniquely for each task they support, as in this generic example,
the OFM-ACM disambiguates equivalent control actions in expecting and explaining such actions.

DUO is updated with a top-down,
breadth-first search procedure. The procedure
starts with the nodes at highest (phase) level in
DUO, and matches their conditions against the
currently active set of context specifiers to
determine the active phase. Inactive phase
nodes, and all their subnodes, are inactive and
not considered further. This process is then
repeated for the subphases of the active phase.
Recall that at the phase and subphase levels,
the OFM-ACM nodes are mutually exclusive.
Again the active one is found and the others
are removed from consideration. At lower
levels in DUO, the search of subnodes of an
active node can identify multiple active sub-
nodes, representing operator activities that are
expected to be performed concurrently.
The general processing scheme applies to all
levels of abstraction in DUO, with the excep-
tion of the mode selection level. As the
“pivot-point” in the OFM-ACM representa-
tion of the operator’s task, the active mode
selection is determined by taking into account
the related mode knowledge encapsulated only
in nodes at the mode selection level. Three

cases can arise in determining the active mode
selection (see figure 34):

Case 1: The mode selection is active
because its conditions are a proper subset of
the currently active set of context specifiers,
and the state space reflects that the corre-
sponding mode is engaged in the control
automation.

Case 2: The conditions of the mode
selection node in DUO match a subset of the
currently active set of context specifiers, but
the corresponding mode is not engaged. In
this case, the mode selection is assigned the
status“active,” because the mode selection is
expected in the current situation according to
the conditions specified in the OFM-ACM. In
this way the methodology derives an expecta-
tion that the mode will be used.

Case 3: If the conditions in the mode
selection node do not match a subset of the
current set of context specifiers, but the auto-
mation mode that corresponds to the mode
selection in DUO is engaged, a new status
designator, “obsolete,” is assigned to the
mode selection. The “obsolete” status desig-

.

46

nator means that, although the mode is
engaged, conditions indicate that another
mode is needed, and thus expected, in the
situation: The obsolete node is processed like
an active node, in that active tasks below it are
designated active or inactive according to their
conditions. In this situation, the activities des-
ignated active will be those involved with
monitoring the operation of the mode as long
as it remains engaged before the transition to
the expected mode.
The conditions on alternate mode selections
are structured so that if the higher level activity
that any of the available modes supports is
active, the conditions for one of these alternate
mode selections must match the current set of
context specifiers. Therefore, in this case, the
mode selection that corresponds to the
engaged mode should be monitored, but is
(about to become) obsolete; there exists
another mode selection to which the operator
is expected to transition, because its conditions
match the current set of context specifiers
according to case 2.
In examining the interplay between cases 2
and 3, it is important to note the reason why a
mode selection in case 2 may not have an

alternative competing mode with status
“obsolete.” This is because the active func-
tion may have changed. Only when the same
function remains active can one mode selec-
tion become obsolete and an alternative mode
selection be active as in case 3.
The processing scheme in which active and
inactive nodes in DUO are identified by
matching the current set of context specifiers
to the conditions knowledge in each node (and
related mode knowledge at the mode selection
level) produces hypotheses about the currently
relevant set of operator activities. This process
works top-down through the levels of abstrac-
tion instantiated in DUO. The search is pared
at each level by limiting the next level of
search to the nodes into which active (or
obsolete) nodes are decomposed. Processes
that explain operator actions and detect errors,
however, require knowledge about actual ’

actions. The revision process is the centerpiece
of these processes. The revision process and
related processes that work bottom-up using
knowledge from DUO along with knowledge
about actual operator actions are the responsi-
bility of the GT-CATS action manager.

47

Case 1:

active mode selection
active function 1. Conditions match

Context Specifiers

mode selection expected and confirmed by
engaged automation mode

(a competing mode
selection may be
becoming obsolete as

I
active mode selection

1. Conditions match
Context Specifiers
2. Automation mode matches
Engaged Mode

(no other mode selections
can be active) active function

I
Case 2: mode selection expected; an alternative

automation mode may be engaged

described by case 3)

\t-------;
Case 3: mode selection different from the

engaged automation mode is expected

/ I ”obsolete” mode selection i (a comDetina mode . -
selection must be I ’ active as described by

1. Automation mode
matches Engaged Mode active function

Figure 34. Mode selections may be “active” or “obsolete.”

The GT-CATS action manager
The GT-CATS methodology uses DUO to
predict operator activities; however, DUO is
supplemented by the action manager, a
mechanism for managing the remaining activ-
ity tracking functions. All of these functions
involve examining detected operator actions in
light of the knowledge in DUO. First, the GT-
CATS action manager attempts to confirm that

an actual operator action meets expectations,
and explains it accordingly. Failing that, the
action manager initiates the revision process
to determine whether an unexpected operator
actions suggests a valid alternative mode, or
whether it is possibly in error.

The action manager’s first function is to gen-
erate explanations for operator actions that
match expectations represented by active

48

ACTION MANAGER r
Issue Alert for

Possible

N t

/Issue Alert for ’
Possible

$Erroneous Action J

A

Issue
Explanation

Issue active action Explanation manual action

action activiated in manual action
DUO (action expected) detected

Figure 35. GT-CATS action manager.

nodes in DUO (see figure 35). This entails
determining whether a detected operator
action has a corresponding active action node
in DUO. If so, the action manager assigns the
action a status of “explained.”

If the action manager cannot locate a corre-
sponding active action in DUO, the observed
action is defined to be unexpected. The action
manager allows a period of time to elapse,
then applies the revision process to the unex-
pected action (see figure 35). The revision
process either explains the action, or identifies
it as a possible error. To formulate a new
explanation for the action, the action man-
ager uses DUO in a bottom-up manner. It first
identifies all action nodes that are instances of

the unexpected action that support active
functions. It then checks the mode selection
that the action supports to see if it is now
active, or, according to its history list, has
been active in the time since the action was
detected. If so, the action manager removes
any other instances of candidate action nodes
from consideration and explains the
unexpected action.

Explaining the action involves first removing
hypotheses about actions expected to support
an alternative mode selection in DUO. GT-
CATS identifies the alternative mode selec-
tions using the structure of the DUO, and
checks their status. If any are active, the
active manager makes them and all of their

49

subnodes inactive. It then sets the status of the
node that corresponds to the unexpected
action to “revised-explained.” Finally, the
action manager explains that the unexpected
action supports a task that supports an
alternative valid mode selection. Thus, to per-
form the revision process, the action manager
uses DUO-by now updated to reflect active
context specifiers-along with status and his-
tory knowledge encapsulated in DUO’S nodes,
and the structure of the OFM-ACM from
which DUO derives.

If the revision process cannot explain an
unexpected operator action, the action
manager determines that the action was not
understood. Such an action is possibly an
operator error. The revision process cannot
explain actions represented by instances of
action nodes in DUO that support mode selec-
tions that have not been active between the
time the action was detected and the time the
revision process was applied. In this case, the
action manager issues an alert signaling that
no alternative instance of an action node in
DUO explains the action, as shown in figure
35.

The GT-CATS methodology uses the expecta-
tions represented by the nodes with active
status in DUO to flag actions that the opera-
tor may have omitted. When an action node
becomes active, the action manager allows a
period of time to elapse. If the action is not
detected within this time period, and no other
actions are detected for which the revision
process can determine that the operator chose
an alternative mode, the action manager issues
a warning that the operator may have omitted
the hypothesized action (see figure 35).

Figures 36 through 39 show a generic example
of the revision process. Figure 36 shows a

generic portion of DUO that represents two
modes (and their supporting tasks, subtasks,
and actions) that can both be used to perform
a particular function. Shaded activities have
active status, and are therefore expected.
Among these activities is the action “push
mode 1 switch.” In figure 37, the operator has
performed the action “push mode 2 switch”
instead. This action is unexpected, because an
action node representing this action is not
active in DUO. The GT-CATS action manager
therefore schedules an event to perform the
revision process on the action. In figure 38,
the fact that the operator performed “push
mode 2 switch’’ has since been reflected in an
updated version of DUO; when mode 2 actu-
ally engages in the controlled system, its cor-
responding mode selection becomes active in
DUO, along with the monitoring activities
required to use mode 2. When the action man-
ager executes the revision process (figure 39),
the “push mode 2 switch” action is explained
to support the use of mode 2 in the situation,
which is valid according to the structure of the
OFM-ACM embodied by DUO.

-

Summary of the GT-CATS methodology
In the GT-CATS methodology, knowledge
about the operator’s task represented in the
OFM-ACM is instantiated in DUO. State space
and LOE knowledge is used to activate a set of
current context specifiers, which are in turn
used to activate nodes in DUO to produce
expectations of activities that are preferable
in the current context. When the operator
performs an action, the action manager either
explains it according to an existing expecta-
tion, explains it via the revision process, or
identifies it as a possible error. If no action is
detected that can be explained, an error of
omission is indicated.

50

Figure 36. Mode selection 1 is expected to be engaged by pressing the mode 1 engagement switch.

51

setup mode 1

Figure 37. An unexpected action is detected (push mode 2 switch).

52

setup mode 1 u
setuplengage

mode 1

I
I mode selection

engage mode 1H push "!Ode

monitor mo e 1-1

Figure 38. DUO is updated to reflect that mode 2 is engaged in the controlled system.

53

1 setup mode t I

engage mode 1H push '''!''de

I mode selection

mon mode 1

I mode 1 $=:=' monitor param 1

mon mode 1
en a e d annunciator

Figure 39. The revision process explains the action as supporting the use of mode 2.

Figure 40 shows a hnctional view of the GT-
CATS architecture. Components derived from The GT-CATS architecture

A computer architecture has been developed
for implementing the GT-CATS methodology.
The architecture provides a computational
framework for tracking the activities of
operators using automation to control a com-
plex dynamic system in real-time. The GT-
CATS architecture has structures for repre-
senting the knowledge required by the GT-
CATS methodology and methods to control
the processing of these knowledge

the GT-CATS methodology &e., the OFM-
ACM, DUO, the LOE, state space, context
specifiers, and action manager) are outlined in
bold in figure 40. Figure 40 also depicts addi-
tional components needed to receive data (Le.,
the interface/parser), coordinate real-time
processing (i.e., the controller), and log and
display expectations and explanations (Le.,
the output interface). Arrows represent infor-
mation flow between components.

representations.

54

- G T-CA TS Y

I Interface/Parser I

Initialize $-
Action

Manager t
Context

Specifiers

Update DUO

I

1

Figure 40. Functional view of the GT-CATS architecture.

Figure 40 also shows the methods used to
process the knowledge representations. One set
of methods instantiate the OFM-ACM in DUO,
and initialize the LOE and state space. During
run time, other methods update the LOE and
state space as new objectives and system state
information are received, activate context
specifiers, and update and access DUO. Figure
40 also depicts the relationship of the GT-
CATS action manager to the other compo-
nents of the architecture. The action manager
uses methods that access DUO in the process
of explaining detected actions. The action
manager also has methods that change the
status of nodes in DUO when executing the
revision process.

The OFM-ACM in the GT-CATS
architecture
The OFM-ACM model of operator-automa-
tion interaction is the critical knowledge repre-

sentation in the GT-CATS architecture. The
OFM-ACM must therefore be represented at a
level of detail and fidelity suitable for instanti-
ating its knowledge in DUO. Each node in the
OFM-ACM is represented in an ASCII file that
GT-CATS reads to instantiate the DUO repre-
sentation (Table 1). This arrangement affords
easy inspection of the OFM-ACM, and simpli-
fies modifications.
The OFM-ACM file structure uses nested
brackets to represent the hierarchical structure
of the OFM-ACM. The OFM-ACM heterarchy
is represented by activities represented by
brackets at the same nested level. Keywords
indicate the type of knowledge specified after
them. An exclamation point demarcates a
comment line; blank lines are ignored.

GT-CATS uses a recursive method to construct
DUO from the OFM-ACM text file
representation.

55

Table 1. Generic OFM-ACM file structure.

! activity-l.ofm-acm
! a generic example of the OFM-ACM file structure

{ activity-level-1 activity-1
reason information about why activity-1 is preferred
! conditions are optional--they may be inherited
active-when context specifier 1
active-when context specifier 2
active-when context specifier 3
active-when-1 context specifier 2
active-when-1 context specifier 4
! activity type and agent may be used only where necessary
activity-type type-designator
agent agent-designator
! automation-mode is used only at the mode-selection level
automation-mode mode-designator
{ activity-level-2 activity-2

reason information about activity-2
active-when context specifier 5
active-when context specifier 6
active-when context specifier 7
active-when-1 context specifier 6
active-when-1 context specifier 8
activity-type type-designator
agent agent-designator
subfile lower-level-activity-l.ofm-acm
subfile lower-level-activity-2.ofm-acm
subfile lower-level-activity-3.ofm-acm 1

reason information about activity-3
active-when context specifier 9
active-when context specifier 10
active-when-1 context specifier 6
active-when-1 context specifier 11
active-when-1 context specifier 12
activity-type type-designator
agent agent-designator
subfile lower-level-activity-2.ofm-acm
subfile lower-level-activity-4.ofm-acm
subfile lower-level-activity-5.ofm-acm 1 1

{ activity-level-2 activity-3

The method is described in detail in the next
section; here the discussion will be limited to
the specification rules. Table 1 shows an activ-
ity (activity-1) at level “activity-level-1” with
two sub-activities (activity-2 and activity-3) at

level “activity-level-2.” The inclusion of
these activities within the brackets of activity- 1
captures the hierarchical decomposition.
Figure 41 shows the structure that is built from
the file shown in table 1. Depending on the

56

activity-level-1

activity-1

activity-level-2

activity-2 F
b activity-3

activity-level-3

Figure 41. Structure of decomposition that results from the file specification shown in Table 1.

conditions for activity-2 and activity-3, these
activities may be concurrent or serial.
Activity-1 has two sets of conditions under
which it is active. The keywords “active-
when” and “active-when-1’’ provide a simple
method for specifying these conditions. These
keywords specify that activity-1 is active either
when hypothetical context specifiers 1, 2, and
3 are present, since they all follow the keyword
“active-when,’’ or when context specifiers 2
and 4 are active, since they all follow the
keyword “active-when-1.’’ Similarly, activity-
3 is active either when context specifiers 9 and
10 are active, or when context specifiers 6, 11,
and 12 are present. As table 4-1 shows, the
conditions are grouped with the appropriate
keywords. Because of the way in which the
search for active activities proceeds in GT-
CATS, conditions need not always be speci-
fied; an activity with no conditions is active if
its parent activity is active.
The keyword “reason” is followed by a
statement of why the activity is preferred
under the specified conditions. The keywords
“activity-type,” “agent,” and “automation-
mode” are used to specify the corresponding

knowledge. Automation-mode knowledge is
included only in activities at the mode-selec-
tion level of the OFM-ACM. This knowledge
consists of the automation mode that is
engaged if the mode selection is chosen.
Activity-type and agent knowledge is used at
the action level to indicate whether the activity
is manual, perceptual, verbal, or cognitive, and
the agent responsible for performing the
activity.
The last important feature of the OFM-ACM
file specification is the “subfile” keyword.
The subfile keyword is followed by the name
of the file that contains the knowledge about
the activities into which an activity is decom-
posed. For example, in table 1 activity-2 and
activity-3 are both decomposed into three
activities at the next level of abstraction, as
indicated by the three subfile designators
inside their brackets. Each subfile may specify
further decomposition of these activities. The
subfile keyword is a convenient shorthand
because activities that occur multiple times in
the OFM-ACM can be specified in a single file
that is read multiple times. In table 1, activity-2
and activity-3 are both decomposed such that

57

- Node

name: activity-1
node-type: activity-level- 1
reason: “information about why the activity is preferred”
id-num:
uplinks:
downlinks:
conditions: ((context specifier 1, context specifier 2,

(context specifier 2, context specifier 4))
context specifier 3)

activity-type: type-designator
agent: agentdesignator
automation-mode: mode-designator
status:
history:

~~ ~~

Figure 42. A generic node structure in DUO.

“lower-level-activity-2” appears in their
decompositions. Reading the file “lower-level-
activity-2.ofm-acm” for each Occurrence
makes lower-level-activity-2 a sub-activity of
both, as shown in Figure 41.

The Dynamically Updated OFM-ACM
The Dynamically Updated OFM-ACM (DUO)
is instantiated as a collection of instances of
activity nodes. An activity node contains all of
the knowledge specified for an activity in the
OFM-ACM, plus knowledge to support proc-
essing. Figure 42 shows an activity node that
would be created for activity-1, as specified in
table 1.

DUO construction procedure
The nodes that comprise DUO are constructed
from the OFM-ACM by a recursive procedure.
The procedure takes as input the highest level
file (or files) in the OFM-ACM and outputs
completed nodes. It works by maintaining two
stacks: one for nodes that have been created
but not yet completed, and one for completed
nodes. The generic OFM-ACM specification
in table 1 will serve as an example of how the
procedure works. When the filename
“activity-l.ofm-acm” is passed to DUO’S
construction procedure, the file is opened for
reading. Comment lines are ignored, as are
blank lines, so the first line read is ”{ activity-

level-lactivity- 1 .” The left bracket signals the
creation of a node instance whose name slot is
filled with activity-1 and whose node-type slot
is filled with activity-level-1. At the time the
node is created, the construction procedure
assigns the node a unique identifier. The iden-
tifier is a number placed in the id-num slot.
The construction procedure then reads the rea-
son knowledge and creates a string used to fill
the node’s reason slot as shown in figure 42.
The procedure then encounters the conditions
knowledge. Context specifier 3-tuples
appearing after the active-when keywords are
grouped into one sublist in the conditions slot;
those following active-when-1 keywords are
grouped into another sublist. Activity-type,
agent, and automation-mode knowledge are
inserted into the appropriate slots if applicable.

The next piece of knowledge in the OFM-
ACM specification file is “{ activity-level-2
activity-2.” The left bracket again signals that
new node should be created. The first node is
therefore placed on the “not-yet-completed
nodes” stack, and the next node is created
according to the keywords in its specification.
The identification number of the first node is
placed in the uplinks list of activity-2 at this
time to signify that activity-2 is part of the
decomposition of activity- 1.
When constructing the activity-2 node, the
procedure encounters the “subfile” keyword.

-

5 8

The occurrence of this keyword has the effect
of placing the partially constructed activity-2
node on the stack of not-yet-completed nodes.
The procedure is then called recursively with
the filename “lower-level-activity- 1 .ofm-
acm.” To understand the recursive behavior
of the construction procedure, the role of the
right bracket must be examined. A right
bracket indicates that all the knowledge
required to specify the node and all of its sub-
nodes has been read. When a right bracket is
encountered, the partially completed node is
removed from the stack of not-yet-completed
nodes, and placed on the stack of completed
nodes. At the same time, its identification
number is placed on the downlinks list of the
first node in the stack of not-yet-completed
nodes. This signals to the procedure that it has
returned to processing the higher-level node.
Because all OFM-ACM specification files end
with a right bracket, a “subfile” keyword
results in all the information in the specified
file being processed into completed nodes.
Thus, when the procedure returns to the previ-
ous level of recursion, all of the information in
the subfiles has been processed.
When DUO’s construction procedure
encounters the line “{ activity-level-2 activity-
3” in table 1, the stack of completed nodes
contains activity-2 and all of its subnodes. The
stack of not-yet-completed nodes contains
activity-1 with the identification number of
activity 2 already on its downlinks list. The
same recursive procedure is then repeated: the
new activity-3 node is instantiated, given an
identification number, its conditions slot filled,
its activity-type and agent slots filled, and the
identification of the first node on the not-yet-
completed stack (activity-1) is placed in the
uplinks slot of activity-3.
When the last right bracket in table 1 is
encountered, all of the nodes in DUO have
been instantiated with the exception of the
node for activity-1, This final bracket signifies
that activity-1 and all of its subnodes have
been constructed, so activity-1 is finally placed

on the list of completed nodes, and the
procedure terminates.
The lowest level nodes (i.e., actions) in the
OFM-ACM representation are specified in the
same manner as nodes at higher levels. Actions
differ from other nodes in that they have no
subnodes. Thus, they are specified beginning
with a left bracket and ending with a right
bracket, but there are no brackets signaling
further decomposition nested within the action
node specifi5ation brackets, and no subfile
keywords, signaling a further decomposition is
not specified in another file.
During the construction procedure, nodes in
DUO are assigned the initial status “inactive.”
The process of assigning a status to a node has
the side effect of placing the status, along with
the time it was attained, on the node’s history
list. Once constructed, DUO is ready to be
used in the activity tracking process.

DUO update procedure
DUO encapsulates all the knowledge in the
OFM-ACM and, furthermore, information
about each activity’s status in the current
operator-automation interaction. When an
activity attains the status “active,” it is
preferred in the current operating context, and
is therefore expected to be performed by the
operator. Thus, the process of updating DUO
is the process by which GT-CATS produces
expectations. DUO’s updating procedure is a
recursive procedure similar to the construction
procedure.
Figure 43 illustrates how the DUO updating
process proceeds according to the GT-CATS
methodology. It works top-down, beginning
with the highest level of activity (i.e., the phase
level). It performs a breadth-first search,
seeking nodes whose conditions are a proper
subset of the current set of context specifiers.
Nodes that meet this criterion are assigned
active status. Nodes not meeting this criterion
are assigned the status inactive. Inactive nodes
are of no further interest in updating DUO; the
statuses of all of their subnodes are
immediately set to inactive (see figure 43).

59

active

I
I I I

I
active

\ J inactive

inactive inactive

b check
these

1 inactive I

Figure 43. The DUO updating procedure pares the search at each level. When a node is found to be
inactive, all its subnodes are assigned the status inactive. The search for active nodes proceeds only
beneath.active nodes at the previ&s level.

The update process next searches for active
subnodes of active nodes at the next highest
level. The downlinks slot of a node identifies
the subnodes of the node. The subnodes of
active nodes are subjected to the updating
process, which continues until nodes having no
subnodes (i.e., actions) have been updated.
As prescribed by the GT-CATS methodology,
the DUO update procedure departs from the
general process at the mode selection level. At
themode-selection level, the procedure
involves testing not only the context specifiers
found in a mode-selection activity’s condi-
tions slot, but also the information in the
automation-mode slot, which indicates the
mode that should be engaged in the controlled
system if the operator has in fact chosen the
mode.
To reiterate (see figure 34), the rules to deter-
mine the status of the activities at the mode
selection level are as follows. In the first case,
if the mode selection is active according to its
conditions (i.e., its conditions are context
specifiers that are a proper subset of the cur-
rently active set of context specifiers), and the
corresponding automation mode is also
engaged in the controlled system automation,

then the mode selection is active. In the second
case, if the mode selection is active according
to its conditions, and another applicable mode
selection matches the engaged mode in the
controlled system state, then the first mode is
active and the second is (becoming) obsolete.
In the third case, if the mode s.election’s auto-
mation mode matches the engaged mode, then
the mode selection is obsolete, and another
mode is active according to its conditions. Of
course, if none of the three cases applies, the
mode selection is inactive.
Insofar as the DUO updating procedure is
concerned, an obsolete mode selection is
treated like an active mode selection. Activities
into which the obsolete mode are decomposed
are still tested to see if they are active. The
result of the application of this method is that
activities that support monitoring the obsolete
mode can be active at the same time as activi-
ties that support setting up and engaging the
expected new mode selection. This is because
the context specifiers used as conditions in
“monitor/adjust” task subtrees below the
mode selection level require that the mode
selection is engaged for the monitoring

-

60

activities to be active-true by definition if the
mode selection has status obsolete.

IIII

internal automation variables - -

The state space
The state space in GT-CATS is comprised of a
collection of instances of state variables (see
figure 44). A state variable represents knowl-
edge about a particular variable in the con-
trolled system. This knowledge includes the
name of the state variable, its latest value, the
time it was updated, and its previous value and
update time.

I

Initialize
State Space State Space

State Space
controlled system state variables

control automation state variables I I - -
I %%

The state space required for activity tracking
in a highly automated complex dynamic sys-
tem has state variables of three classes, as
shown in Figure 44: (1) controlled system state
variables, which are basic system performance

measures; (2) control automation state
variables, which represent information about
engaged or armed control modes, and target
values that the automation is currently
attempting to achieve; and (3) internal auto-
mation variables, such as programmed target
values or predictive information computed by
the automation itself.
The state space is constructed by instantiating
state variables for each parameter. The state
space is updated with new state information as
it is received from the controlled system via
the interface/parser. The update process
involves replacing the previous value with the
old latest value and inserting the new value in
place of the old latest value. Time stamp
information is similarly recorded.

The Limiting Operating Envelope
The limiting operating envelope (LOE) is rep-
resented as structure with two parts (figure 45):
(1) a short-term limit state, and (2) a series of
long-term limit states. Each limit state consists
of a set of state values to be achieved. The
long-term limit states represent a series of
desired limit states. The short-term limit state
represents desired state values that override the
values contained in the currently active long-
term limit state.
Initialization of the long-term limit states
entails instantiating a limit state that contains
the set of values required to specify each goal
in a sequence of goals to be attained. The first
long-term limit state in the sequence that has
not already been achieved is called the “active
limit state” (figure 45). The short-term limit
state is initialized with any amendments to the
initial active limit state.

61

Limiting Operating Envelope
short term limit state
0 0 0 0 0

long term limit states

active
limit state

Figure 45. The Limiting Operating Envelope.

The GT-CATS LOE is updated in two ways:
First, on each processing cycle, the latest state
information is used to determine whether the
active limit state has been achieved. If it has, it
is designated “passed,” and the next long-
term limit state becomes the active limit state.
The second type of update addresses the short-
term limit state. Whenever amended goals arise
from changes in environmental constraints on
system operation, the amended goal values
replace the corresponding values in the short-
term limit state. Thus, the updated LOE repre-
sentation reflects both the currently active
long-term limit state and any short-term modi-
fications to it imposed by dynamic
environmental constraints.

Context specifiers
Context specifiers are a crucial component of
the GT-CATS activity tracking architecture.
They transform knowledge from the state
space and LOE into a summary of the current
operational context, which then serves as the
means for referencing the conditions in DUO

under which a particular activity is expected
(figure 46). Context specifiers are constructed
at run-time, and are designated as active or
not.
The specific form used to represent context
specifiers is not pivotal; any scheme that
ensures unique context specifers, each with a
specific connotation about the current opera-
tional context, will suffice. The GT-CATS
architecture was developed with context speci-
fiers represented as 3-tuples (figure 47). The
first element indicates the type of state variable
that is referenced to construct the given con-
text specifier. The second element is the
specific state variable. The third element is a
qualifier that indicates the relationship of the
value of the particular state variable with
respect to the desired value represented in the
LOE (e.g., “within limits” or “outside
limits”). These qualifiers are qualitative so that
the overall set of current context specifiers
provides a qualitative summary of the current
operational context.

62

LOE State Space u

Context
Specifiers

DUO

, , t - , ~ ~ r c -
Figure 46. Context specifiers provide a dynamic summary of the current operational context, as a
means of referencing the conditions in DUO.

Figure 47. Activation of context specifiers.

An unconventional case arises when a context
specifier is needed to represent the aggregate
relationship of several state variables vis a vis
the LOE. This is necessary when a one-to-one
mapping between the state space and a relevant
component of the active limit state, or short-
term modifications to it, does not provide the

required context information. Such aggregate
context specifiers are useful, for example, in
determining the operational context that
results from a number of internal automation
variables. A generic example of such a context
specifier is “automation-state profile-infor-
mation programmed.” Here, several internal

63

automation variables are examined to amve at
the summary context specifier.

Context specifiers are activated based on
information from updated state space and
LOE representations. The GT-CATS architec-
ture provides that the required comparisons
are directly encoded-the state variables,
limiting operating envelope elements, and tol-
erances used to activate a context specifier are
directly specified in code. This allows extra
predictive functions to also be encoded if such
information is not directly available in the state
space.

,

The action manager
The GT-CATS action manager plays an
important role in the GT-CATS architecture. It
handles all detected operator actions. It
attempts to explain expected actions, explain
unexpected actions, and detect errors. The
action manager uses the GT-CATS controller
to schedule events, accesses DUO to check to
the status of activities, and updates DUO to
reflect the state of operator-automation inter-
actions. The functional relationship between
the action manager, DUO, and the controller is
shown in figure 48.
The action manager’s first function is to
explain expected operator actions (see figure
48). When an action attains active status in
DUO, it is expected. Thus, when an operator
action is detected, the action manager first
checks whether an action of the same type is
active in DUO. The action manager uses gen-
eral DUO access routines for this purpose. If
the action is found to be expected, the action
manager explains the action based on the
structure of the OFM-ACM embodied in
DUO; the action is explained as supporting the
associated subtask, task, and mode selection in
the OFM-ACM structure. At the time the
explanation is produced, the action manager
assigns the action the status “explained,” and

the event to check whether the expected action
has in fact been performed is cancelled.
The action manager’s second function is to
explain unexpected operator actions via the
revision process. The action manager initiates
the revision process upon detecting an opera-
tor action that is not expected according to
DUO. After first verifying that the action is not
expected, the action manager identifies all
instances of the action in DUO that can sup-
port the expected function-level activity. After
the action manager identifies one or more
instances of the action that support the
required function, the action manager sched-
ules an event to attempt to produce an expla-
nation for the unexpected operator action.
The controller signals the action manager after
the prescribed time interval to examine each of
the instances of the unexpected action to find
one that supports an alternative, but valid,
mode selection. The action manager looks
specifically to determine if a mode selection
and supporting task that the action supports
has become active in the time since the action
was detected. To determine this, the action
manager examines the history information
contained in the corresponding nodes in DUO.
If the action manager finds an instance of the
action that meets this criterion, the action
manager assigns the node a status of “revised-
explained” and explains the action as sup-
porting the task and mode selection it supports
in DUO. Attempts to explain instances of the
action not checked thus far are annulled.
If the action manager cannot explain a
detected action that has instances in DUO, the
action may be in error. The action manager
therefore issues a statement that it could not
explain the detected action. Although the
action manager does not positively identify
operator errors, an action that it cannot explain
through the revision process is identified as an
error candidate.

-

.

*

64

I Controller I

I: DUO

Figure 48. Relationship between the GT-CATS action manager, controller, and DUO.

The action manager's last function is to check
that actions expected according to DUO are in
fact performed, or that alternative valid actions
are performed in their place. When an action
attains active status in DUO (and is, therefore,
expected), the action manager schedules an
event to check that the action has been per-
formed. If neither the expected action nor a
valid alternative has been detected in the time
before the event is processed, the action
manager issues an alert for a possible error of
omission. If the action was superseded by an
alternative, but valid, action, alerts for an error
of omission related to the action originally
expected are annulled.

Control of processing in GT-CATS
GT-CATS requires an interface/parser, output
interface, and controller to coordinate real-

time processing. The architecture includes an
interface/parser that can accept input in real-
time from a controlled system, or read logged
data from an input file. The real-time interface
includes a data port used to receive data. The
port is polled for data, 'and when data are
received, the data are parsed and processed.
All data are time-stamped; this information is
used to update the timing information of the
GT-CATS controller. The data appearing after
the time stamp identifies whether the data are
updated state information, new environmental
constraints, or operator action data. Simulator
data of these types is sent to either the appro-
priate updating procedure, or the action
manager. The file interface operates in an
analogous fashion; time-stamped data that
would come from the simulator in real-time
are simply read from a file.

65

The GT-CATS output interface has two com-
ponents: a data file, and a real-time display.
The file records all determinations made by
GT-CATS. When actions are activated
(expected) in DUO, an output file records the
time the action was expected, and all other
activities in DUO that are active at the time. All
output from the action manager is similarly
recorded. The manner in which explanations
for actions are produced (i.e., from a prior
expectation, or through the revision process) is ’

also logged. Possible errors of omission or
commission are similarly logged.
The GT-CATS real-time display shows the
current status of all representations in the GT-
CATS architecture. Windows for the state
space and the LOE display the current values
of state variables, and constraints from the
LOE. Another window shows the status of
nodes in the currently active phaselsubphase of
DUO. Active nodes and explained actions are
color-coded. Unexpected actions are also
color-coded, as are successful revisions
Another window shows output similar to that
logged in the output file.
The GT-CATS controller is responsible for
scheduling and processing events according to
its timing functions. The controller maintains a
queue of events that are scheduled for later
processing. When its timing functions indicate
that an event is ready for processing, the
controller calls the appropriate component of
the GT-CATS architecture to perform the
event.
The GT-CATS controller uses a simple proc-
essing cycle to coordinate updates to the state
space, LOE, and DUO with action manager
events. When new state information is received,
the processing cycle schedules state space
updates. These updates are processed, then the
LOE is updated by checking whether the
updated state information indicates that the
active long-term limit state has been passed.
After the LOE is updated, the controller
initiates the DUO updating process using the
new LOE and state space information. A new
set of context specifiers is activated, and the
DUO updating procedures use them to gener-

ate expectations by determining which nodes
in DUO have active status.
The GT-CATS controller maintains an event
queue for coordinating action manager events
with the updating cycle. The action manager
schedules events with controller in accordance
with the time periods specified for detecting
errors of omission or executing the revision
process. When the controller processes these
events the action manager is called upon to
perform the required assessments and updates
to DUO. -

-

GT-CATS compared with other
intent inferencing systems
Two intent inferencing systems developed pre-
viously are OFMspert (ref. 4) and OPAL (ref.
29), described in Chapter 11. GT-CATS’ activ-
ity tracking methodology enhances the OFM-
based intent inferencing approach embodied
in OFMspert. OFMspert’s intent inferencing
component, ACTIN, uses a blackboard archi-
tecture. Given current system state, ACTIN
posts functions, subfunctions, and tasks from
the OFM on the blackboard. The intent infer-
encing process involves mapping operator
actions onto these OFM-derived functions,
subfunctions, and tasks. A currently instanti-
ated function corresponds to a current opera-
tor goal; by linking actions to the functions,
subfunctions, and tasks they can support, and
assessing the blackboard to ensure temporal
and semantic constraints on the connected
actions are met, ACTIN produces an under-
standing of the operator’s current intentions.
GT-CATS’ OFM-ACM and processing
scheme, in particular, differ from OFMspert.
The OFM-ACM extends the OFM beyond
functions, subfunctions, tasks, and actions,
adding the mode-selection level and explicitly
representing activities in mutually exclusive
phases and subphases of system operation in
the manner of Jones et al. (ref. 39) and
Thurman and Mitchell (ref. 14). GT-CATS’
OFM-ACM is explicitly represented in easily
editable files.
GT-CATS instantiates its OFM-ACM in DUO.
By using the currently active set of context
specifiers to activate activities in DUO, GT-

*

66

.

CATS uses DUO itself to represent currently
expected operator activities. Like ACTIN, GT-
CATS understands actions by linking them to
the mode selection, task, and subtask they sup-
port. Unlike ACTIN, however, GT-CATS
attempts to determine the precise next set of
activities the operator will perform, rather than
all feasible activities. In this way, GT-CATS
predicts one mode selection an operator will
use to perform a currently active function
from among several available alternatives.
GT-CATS also differs from ACTIN in the
manner in which actions are explained by
mapping them to the activities they support.
ACTIN uses the concept of “maximal con-
nectivity,” connecting an action to all feasible
tasks that it might support. GT-CATS instead
associates detected actions with a single
predicted mode selection. In this manner, GT-
CATS explains actions as supporting a
preferred mode-one of several modes avail-
able to the operator in the current situation.
GT-CATS’ method of associating operator
actions with only one mode selection
necessitates a means for explaining actions that
do not support the preferred mode. GT-CATS
therefore includes the revision process to
explain actions that it does not expect. The
revision process enables GT-CATS to use
updated state information to associate unex-
pected actions with alternative operator mode
selections. GT-CATS’ revision process can
determine if an unexpected action is an
operator error, or associated with an alterna-
tive, but valid, mode.
OPAL (ref. 29) uses a network of plans and
goals, called a Plan-Goal Graph, to establish a
hierarchy of operator activities. Like both GT-
CATS and ACTIN, OPAL understands opera-
tor actions by associating them with active
plans and goals. OPAL differs in that it also
uses scripts associated with some plans to rep-
resent procedural activities. If an active plan
has an associated script, OPAL first attempts to
match actions to the script and explain them as
supporting the represented procedure. This
script-based reasoning simplifies the intent-
inferencing process, as the next action(s) are
specified in the script.

If OPAL cannot match an operator action to a
script, it attempts to explain the action by asso-
ciating it to an active plan. Failing this, OPAL
uses a procedure similar to the revision process
used by GT-CATS: it uses the structure of the
Plan-Goal Graph to attempt to locate other
plans and goals that the action can support.
OPAL identifies an action as a possible error if
it does not support any plan applicable to the
current- situation.

Summary
The GT-CATS methodology and supporting
computer architecture are designed to track
operator activities in real time. The OFM-ACM
imparts a specific mode orientation to the
OFM, to provide GT-CATS with the capability
to understand operator actions in complex
systems with multiple modes. GT-CATS uses
the OFM-ACM to predict the mode selection
and associated activities an operator will per-
form in using a preferred mode selection to
control the system in the current operating
situation.
GT-CATS explains operator actions according
to its expectations where possible; if a mis-
match exists between expected and actual
actions, GT-CATS uses its revision process to
attempt to explain a particular action as sup-
porting an alternative mode applicable in the
current situation. If GT-CATS does not detect
any action that supports a mode applicable to
perform a required control function, it indi-
cates a possible error of omission; if a detected
action cannot be associated with an applicable
mode, the action is flagged as a possible error.
The next chapter describes an implementation
of GT-CATS to track the activities of pilots
using modes to navigate in glass cockpit
aircraft.

67

f

5. GT-CATS Implemented for the
Glass Cockpit

Introduction
This chapter describes the proof-of-concept
implementation of GT-CATS for the Boeing
757/767 glass cockpit aircraft. Using an
Om-ACM developed for Boeing 7571767
pilots, GT-CATS predicts and interprets the
actions pilots perform as they use the available
automation modes to navigate. This chapter
discusses how each of the components of GT-
CATS architecture is instantiated for this
application. First it describes the OFM-ACM
developed for the Boeing 757/767. Next, it
presents the state space and limiting operating
envelope implementations. It then describes
the context specifiers used in GT-CATS, and
the use of these context specifiers as condi-
tions in the OFM-ACM. The chapter next
describes GT-CATS’ implementation of DUO.
The GT-CATS action manager is then dis-
cussed. The chapter concludes with examples
of GT-CATS operation.

OFM-ACM for the B757/767
GT-CATS uses an OFM-ACM to model the
activities of 757/767 pilots. The OFM-ACM
decomposes the navigation task into phases,
subphases, functions, mode selections, tasks,
subtasks, and actions. Conditions to enable the
expectation of each activity, along with activity
type, agent, and reason information, complete
the OFM-ACM. This discussion is divided into
two parts. This first segment focuses on the
decomposition of pilot activities. The second
segment discusses how context specifiers are
used to set up expectations for pilot activities.

The reader unfamiliar with the operation of
the Boeing 757/767 automation may refer to
the description presented in Chapter 111.

Structure of the OFM-ACM
In developing the OFM-ACM, the flight was
first divided into mutually exclusive phases
and subphases (figure 49). Climb phase is
decomposed into three-altitude-dependent
subphases: climb-1000 (climb to 1,000 get),
climb-3000 (climb to 3,000 feet), and climb-
cruise (climb to cruise). In the climb-1000
subphase, pilots fly the takeoff profile by
manually tracking the flight director in takeoff
and HDG HOLD modes. The crew configures
the autopilot and autothrottle systems for the
first time in the climb-3000 subphase, which
begins at 1,000 feet. By the time the aircraft
has reached an altitude of 3,000 feet, normal
use of automation for climbing is established.
The climb-cruise subphase of climb represents
these functions.
Cruise phase begins when the aircraft levels off
at cruise altitude. Cruise phase is divided into
two subphases, init-cruise (initiate cruise) and
cruise-to-descent, that differ primarily in the
descent briefing the pilots perform when
aproaching the top of descent (T/D). When the
top of descent is passed, the descent phase of
flight commences. In the GT-CATS OFM-
ACM, descent is divided into two subphases,
init-descent (initiate descent) and descent-to-
apprch (descent to approach). Like the sub-
phases of cruise, the subphases of descent
differ primarily in the approach preparations
required during the latter subphase. The OFM-
ACM decomposition of the flight into phases
and subphases is shown in figure 50.

69

climb to
1000 ft.

cruise

3000 ft. -

'Oo0 2

climb tc
3000 i

It it uicii

/

climb to
cruise

/

initiate
cruise

- ..

IC

CLIMB

Figure 49. Phases

cruise to
descent

+ 5 nm
to T/D

CRUISE

and subphases of flight.

initiate
descent

D

\

descent to
approach

\ +5 U D nm to

DESCENT

climb-1 000

I climb cl i m b-3000

climb-cruise I

init-cruise

cruise-to-descent

1
I cruise

init-descent

descent-to-apprch
descent

Figure 50. Phases and subphases in the GT-CATS OFM-ACM.

70

turn-onto-hdg I

,-

I hold-hdg I
climb-to-alt I

tu rn-on to- hdg 1
ho I d- h d g I

I cl imb-3000 cli m b-to-art I
reconfig-aircraft 1 \>

reconfig-autof light I

turn-onto-hdg I
d

hold-hdg I
climb-cruise

17 climb-to-alt I

hold-alt 1
Figure 5 1. OFM-ACM decomposition of climb subphases into functions.

The next step in structuring the OFM-ACM is
to decompose each of the subphases into the
functions that the crew performs (figures 51
through 53). During the climb-1000 subphase,
three navigation-related functions are
required: turn-onto-hdg (turn onto a heading),
hold-hdg (hold a heading), and climb-to-alt
(climb to an altitude).
The climb-3000 subphase is decomposed into
five functions: turn-onto-hdg, hold-hdg,
climb-to-alt, reconfig-aircraft (reconfigure the
aircraft), and reconfig-autoflight (reconfigure
the autoflight system). The two additional
functions are important during the climb-3000
subphase because the crew adjusts the aircraft
configuration (i.e., flap settings, after takeoff
checklist) from the takeoff configuration at
this time, and configures the autoflight system
(i.e., engaging an autopilot in CMD; setting
climb thrust).
In the climb-cruise subphase of the OFM-
ACM, pilot functions focus solely on the use

of automatic modes to navigate. The functions
important during the climb-cruise subphase
are: turn-onto-hdg, hold-hdg, climb-to-ah, and
hold-alt (hold an altitude). The hold-alt func-
tion is important above 3000 feet because
ATC or published departure procedures may
require temporary level-offs at altitudes below
the cruise altitutude. Descend-to-alt (descend
to an altitude) is not included as a function
during climb phase, because a descent is not
normally required during climb.
When the aircraft levels offs at cruise altitude,
the cruise phase of flight commences with the
init-cruise subphase (see figure 52). This sub-
phase may require pilots to perform the fol-
lowing five functions: turn-onto-hdg, hold-
hdg, step-climb-to-alt (step-climb to an
altitude), hold-ah, and step-descent-to-alt
(step-descent to an altitude). Step climbs and
step descents are a means of changing the
planned cruise altitude (i.e., “stepping” up or
down to a new cruise altitude) as required by

71

ATC or weather considerations. The cruise-to-
descent subphase includes an additional pilot
function for reconfiguring the aircraft. The
reconfig-aircraft function involves completing
the descent checklist prior to the top of
descent.
When the aircraft reaches the top of descent,
the flight enters the descent phase (see figure
53). The first subphase of the descent phase,
init-descent, is decomposed into turn-onto-
hdg, hold-hdg, descent-to-alt, and hold-ah.
The descent-to-apprch subphase also has a
reconfig-aircraft function that encompasses
approach preparations; because the required
activities are not detectable, and because simi-
lar functions in the climb phase were deemed
sufficient to demonstrate how GT-CATS tracks
activities not related to mode selections, this
function was represented by a place-holder in
the GT-CATS OFM-ACM.

tainty as to which functions the pilots should
perform at a particular time.

descend-to-alt

- * hold-alt

turn-onto-hdg

*
hold-hdg I

descent-to-apprch descend-to-alt

hold-alt 1
\ ,,, - - - - - - - - - - .

reconfig-aircraft ,
L - - - - - - - - - -

Figure 53. OFM-ACM decomposition of
descent subphases into functions.

hold-hd

1 init-cruise step-climb-to-alt

hold-alt 1
step-descent-to-a1 t

hold-hdg I

hold-alt

step-descent-to-alt v
reconfig-aircraft

Figure 52. OFM-ACM decomposition of cruise
subphases into functions.

An important requirement of the function
decomposition is that the functions are
uniquely determinable. As discussed in the
Chapter IV, this means that there is no uncer-

The GT-CATS OFM-ACM has functions
related to controlling lateral profile (i.e., turn-
onto-hdg and hold-hdg) and vertical profile
(Le., climb-to-alt, descend-to-alt, and hold-alt).
One function from each set is always active at
any given time (e.g., the pilot will never want
to turn and hold a heading simultaneously). A
lateral control function is always active con-
currently with a vertical control function, but
there is no ambiguity concerning which lateral
and vertical control functions should be active.
Figures 51 through 53 illustrate how the OFM-
ACM decompositions of subphases into func-
tions follow this principle.
The level of abstraction below the function
level in GT-CATS’ OFM-ACM is the mode
selection level. At the mode selection level,
each of the functions is decomposed into the
mode selections available for performing them
using the 757/767 automation modes (figures
54 through 60). Functions that are not sup-
ported by automation modes are not decom-
posed into mode selections; for example,
functions that address reconfiguring the air-
craft and autoflight systems are decomposed
directly into required tasks, so no mode selec-
tions are shown to support them in figure 55.

72

hold-hdg fd-hdg-hold

Figure 54. OFM-ACM decomposition of functions into mode selections in the climb-1 000 subphase.

fd-hdg-scl-turn I

t

turn-onto-hdg hdg-scl-turn

I Inav-turn I
J fd-hdg-hold I

hdg-hold-hold
hold-hdg

.I Inav-hold I I / I

hdg-sel-hold

fd-takeoff-climb

n /
fl-ch-climb I

climb-to-alt vnav-spd-climb

reconfig-aircraft

vs-climb

~~

Figure 55. OFM-ACM decomposition of functions into mode selections in the climb-3000 subphase.

Depending on the subphase, the crew may
have different mode selections available for
accomplishing the same functions. For the
climb- 1000 subphase, fd-hdg-sel-turn (flight
director HDG SEL turn), fd-hdg-hold (flight
director HDG HOLD), and fd-takeoff-climb
(flight director TO climb) are the only mode
selections available to perform the respective
functions. For navigation functions during the
climb-3000 subphase (figure 55) , a range of
mode selections is available, depending on
when an autopilot is engaged in command
mode (CMD). The turn-onto-hdg function can
be accomplished by fd-hdg-sel-turn or, after
CMD mode engagement, hdg-sel-turn (HDG
SEL turn) or Inav-turn (LNAV turn). The
hold-hdg function is decomposed into fd-hdg-
hold, hdg-hold-hold (HDG HOLD hold), Inav-

hold (LNAV hold), or hdg-sel-hold (HDG
SEL hold). A range of vertical axis modes
similarly become available during the climb-
3000 subphase (see figure 55). Besides fd-
takeoff-climb, the mode selections fl-ch-climb
(FL CH climb), vnav-spd-climb (VNAV SPD
climb), vs-climb (V/S climb), and auto-alt-cap-
climb (automatic ALT CAP climb) are avail-
able. Although the crew never actually
“selects” ALT CAP mode (because it always
engages automatically), it is included at the
mode selection level of the OFM-ACM. This
allows the auto-alt-cap-climb mode selection
to be decomposed into monitoring tasks
required to monitor the operation of ALT
CAP as it completes the climb-to-alt function
begun with another mode selection.

73

hdg-sel-turn

Inav-turn
turn-onto-hdg

I
I

hold-hdg Inav-hold I

l l hdg-sel-hold

fl-ch-climb

vnawspd-climb

vs-climb

auto-alt-cap-climb

climb-cruise

climb-to-alt

I
. _

.It-hold-hold \
\ vnav-path-hold

VS-hold J
Figure 56. OFM-ACM decomposition of hnctions into mode selections in the climb-cruise subphase.

The climb-to-alt function for the climb-cruise
subphase are decomposed into the same mode
selections as those available for use in the
climb-3000 subphase following autopilot
CMD mode engagement. In the climb-cruise
subphase, however, the hold-alt function is
introduced (see figure 56). The hold-alt func-
tion is decomposed into the mode selections
alt-hold-hold (ALT HOLD hold), vnav-path-
hold (VNAV PTH hold), and vs-hold (VIS
hold). The vnav-path-hold mode selection
reflects a possible automatic VNAV transition
to the VNAV PTH submode from the VNAV
SPD submode, if VNAV levels the aircraft to
meet a FMS-programmed waypoint crossing
restriction. Both the alt-hold-hold and vnav-
path-hold mode selections may be manually
engaged by the pilot, or automatically
engaged by the AFDS (vnav-path-hold as just
discussed; alt-hold-hold via a mode transition
from ALT CAP mode to ALT HOLD mode).
The vs-hold mode selection represents the pos-
sibility of selecting a vertical speed of zero on
the MCP while in V/S mode.
In the GT-CATS OFM-ACM, the mode selec-
tion alternatives for the turn-onto-hdg and
hold-hdg functions are available in each sub-

phase of flight after their introduction in the
climb-3000 subphase. Mode selections per-
taining to vertical axis modes in the descent
phase are analogous to those in the climb-
cruise subphase (see figures 57 and 58).
Instead of fl-ch-climb, vnav-spd-climb, vs-
climb, and auto-alt-cap-climb, the alternatives
are fl-ch-descent, vnav-descent, vs-descent, and
auto-alt-cap-descent. A notable difference in
these decompositions is the unspecified sub-
mode information in “vnav-descent.” Both
VNAV PTH and VNAV SPD are available in
descent, but they are not distinguished in the
decomposition. The reason for this is twofold:
first, the distinction is not important in pre-
dicting manual operator actions (i.e., the same
set is applicable to either VNAV PTH or
VNAV SPD); second, as discussed in detail
later, the set of context specifiers as imple-
mented cannot predict when a transition
between VNAV F’T” and VNAV SPD will
occur.
The GT-CATS OFM-ACM models the cruise
phase of flight as having climb-to-altitude,
hold-altitude, and descend-to-altitude func-
tions. In the mode selection decompositions
these functions (see figures 59 and 60), the

of

74

vnav-step-climb and vnav-step-descent mode
selections represent the use of VNAV to
change a cruise altitude by reprogramming the
CDU according to FMS-computed projections
about fuel economy at different cruise
altitudes.
Each mode selection in GT-CATS’ OFM-
ACM is decomposed into the tasks required to
use the corresponding 757/767 automation
modes. As figure 61 shows, using FL CH as an
example, mode selections are commonly
organized in to “setup/engage” and
“monitor/adjust” tasks. Two subtasks com-
prise the setup-eng-fl-ch task: set-mcp-alt (set
the MCP altitude) and eng-fl-ch (engage FL
CH). The set-mcp-alt subtask is supported by
the action dial-mcp-alt (dial the MCP altitude
knob). The eng-fl-ch subtask is supported by
the push-fl-ch-sw (push MCP FL CH switch)
action. Four subtasks comprise the mon-adj-fl-
ch-climb task: mon-fl-ch-climb-profile
(monitor FL CH climb profile), adjust-mcp-alt
(adjust the MCP altitude), adjust-mcp-ias
(adjust the MCP indicated airspeed), and mon-
fl-ch-engd (monitor that FL CH is engaged).
The mon-fl-ch-engd (monitor FL CH
engaged) subtask is supported by the action
mon-fl-ch-adi-annc (monitor the FL CH AD1
annunciator).

hdo-sel-turn I
turn-onto-hdg

Inav-turn

hdg-hold-hold

I/ hdg-rel-hold 1

11-ch-deasent
init-descent

vnav-descent

vs-descent

descend-to-a11

811-hold-hold

hold-a11 vnav-path-hold

vs-hold 1

Figure 57. OFM-ACM decomposition of func-
tions into mode selections in the init-descent
subphase.

Y
vnav-doreant

deacmnt-to-mpprch descend-to-all
VS-deSCOhl

.It-hold-hold

h o l d 4 1

I
I
I

vs-hold 1

Figure 58. OFM-ACM decomposition of
functions to mode selections in the descent-
to-apprch subphase.

(urn-onto-hda

Figure 59. OFM-ACM decomposition of init-
cruise subphase functions into mode
selections.

The remaining subtasks of the mon-adj-fl-ch-
climb subtask illustrate key features of the
OM-ACM modeling approach. First, two
important adjustments can be made to FL CH
once the mode is engaged. If ATC clears the

75

hdq-.el-turn I
Inav-turn

I hdp-hold-hold

vs-hold

(I-ch-descent

vnav-step-descmnt

vr-descent

auto-all-cap-descen

elep-dercenl-lo-alt

reconfig-aircraft

Figure 60. OFM-ACM decomposition of cruise-to-descent functions into mode selections.

dial-mcp-alt
I setup-eng-fl-ch

I
I I \ . -

Y ena-fl-ch -Dush-fl-ch-sw I

mon-11-ch-climb-profile

dial-mcp-alt
t I mon-adj-fl-ch-climb

~

adjust-mcp-ias dial-mcp-ias

rnon-fl-ch-adi-annc

Figure 61. Tasks, subtasks, and actions supporting the fl-ch-climb mode selection.

aircraft to higher altitude before FL CH transi-
tions to ALT CAP (to capture the previously
cleared altitude), a pilot can adjust the MCP
altitude and continue the climb in FL CH. This
adjust-mcp-alt subtask is supported by a dial-
mcp-alt action. Another aspect of FL CH
mode usage involves the autopilot SPD mode
that engages when FL CH engages. Upon FL

CH mode engagement, the MCP speed window
displays the current airspeed. Pilots are trained
to adjust the airspeed using the MCP speed
knob following FL CH mode engagement.
Thus, the mon-adj-fl-ch-climb task also has a
adjust-mcp-ias subtask, supported by a dial-
mcp-ias action.

76

pnf-con(irm-de¶ired-.t

setup-cng-tl-ch

Figure 62. Cognitive, verbal, and perceptual actions that also support the set-mcp-alt subtask of the
setup-eng-fl-ch task.

The mon-fl-ch-climb-profile subtask is not
further decomposed in the GT-CATS O m -
ACM, because none of the actions required to
monitor the profile are manual. It is nonethe-
less included in deference to its importance to
the mon-adj-fl-ch-climb task. A similar mod-
eling perspective leads to the decomposition of
tasks into subtasks supported by a single
action. These subtasks are also supported by
various cognitive, perceptual, and/or verbal
actions. Figure 62 shows, for example, actions
involved with the subtask set-mcp-alt. Besides
the manual dial-mcp-alt, the decomposition
could include a cognitive action to determine
the altitude that should be set, verbal confir-
mation actions from both the PF and PNF, and
similar confirmations that the altitude was
indeed set correctly. Many such actions were
omitted from the GT-CATS OFM-ACM for
parsimony. Others were included to demon-
strate that GT-CATS can effectively expect
these actions. The complete GT-CATS OFM-
ACM for the 757/767 glass cockpit is
illustrated in Appendix B.

State space
The GT-CATS state space is a collection of
757/767 state variables. The GT-CATS state
space represents general system state variables
(aircraft state), control automation state vari-
ables (Autoflight System (AFS) state, i.e.,
MCP-selected target values and engagedarmed
modes), and internal automation variables
(FMS state). These elements of the GT-CATS
state space are depicted in figure 63.
The GT-CATS state space is constructed by
instantiating state variables for each parameter.

Figure 5-16 shows each of the 757/767 state
variables used in GT-CATS. Seven state vari-
ables represent aircraft state: hdg (heading),
msl-alt (mean sea level altitude), agl-alt (above
ground level altitude), spd (airspeed), vs
(vertical speed), lat (latitude), and long
(longitude).

\

FMSS

Aircrafi State

Figure 63. State space elements represented in
GT-CATS’ 757/767 state space.

Eleven AFS state variables represent the state
of the 757 control automation (see figure 64).
Five of these represent the armedengaged
modes: roll-engd (engaged roll mode), roll-
armed (armed roll mode), pitch-engd
(engaged pitch mode), pitch-armed (armed
pitch mode), auto-thr-engd (engaged

77

autothrottle mode). Two others represent
autopilot and autothrottle status: cmd-mode
(autopilot status-F/D or CMD mode) and tsp
(autothrottle thrust limit se lec ted4LB (climb
thrust) or not). The remaining four AFS state
variables reflect values selected on the MCP:
mcp-hdg (MCP-selected heading), mcp-alt
(MCP-selected altitude), mcp-spd (MCP-
selected airspeed), and mcp-vs (MCP-selected
vertical speed).
Ten additional state variables represent internal
FMS variables. The first two (see figure 64)
are vnav-tgt-alt (VNAV target altitude) and
vnav-tgt-spd (VNAV target speed). These state
variables represent the next altitude and speed
that the FMS is programmed to attain in
VNAV mode. These target values may be
associated with a waypoint crossing restriction
or the programmed cruise altitude and cruise
speed. The vnav-spd-int (VNAV speed inter-
vention submode) state variable indicates
whether the VNAV speed intervention
submode is in use. As discussed earlier in this
chapter, when VNAV speed intervention is in
use, the MCP-selected airspeed (represented by
the mcp-spd state variable) overrides the FMS-
programmed airspeed (represented by the
vnav-tgt-spd variable) as the speed that VNAV
tracks.
The next three FMS state variables help to
identify the aircraft’s phase of flight. These
are toc-passed (top-of-climb passed or not),
tod-passed (top-of-descent passed or not), and
vnav-event-dist (VNAV event distance). The
vnav-event-dist variable indicates the distance
to a VNAV “event,” defined as when the
aircraft passes a VNAV-computed point (Le.,
top-of-climb, top-of-descent, or end-of-
descent). Thus, vnav-event-dist indicates, for
example, the distance to the top-of-descent, if
the the top-of-climb point has already been
passed.
Four additional FMS state variables represent
important information about the aircraft’s
position relative to the programmed FMS
route.

name: lat
value: 33.633
update time: 12457
prev value: 33.764
pmv update time: 12452

J

AFS state variables

pitcharmed

internal FMS variables

past-last-wpt

Figure 64. State variables in the GT-CATS
state space.

These are on-track (on the LNAV track
programmed in the FMS or not), active-wpt
(the FMS active waypoint), next-wpt (the FMS
waypoint following the active waypoint), and
past-last-wpt (past the last FMS waypoint,
signaling a route discontinuity, i.e., a condition
where there are no waypoints programmed
between the aircraft’s current location and the
start of the approach, or not). The on-track
variable indicates whether LNAV is tracking
the programmed route, and the remaining
variables reflect the location of the aircraft
along the programmed route.
Each of the GT-CATS state variables are
updated when GT-CATS receives time-
stamped update data. As shown in figure 64,
the previous values and update times are
recorded with each new update. The variables
comprising the GT-CATS state space, together
with the LOE, play a crucial role in generating
context specifiers. The GT-CATS LOE is
discussed in the next subsection.

Limiting Operating Envelope
The GT-CATS LOE represents constraints
imposed by the 757/767 operating

78

environment. Constraints stem from three
sources: ATC, the route the aircraft is
scheduled to fly, and guidelines for general
aircraft operation (figure 65). During normal
operation these sources constrain typically
operation more than the operating capabilities
of the airplane itself, so they define the
limiting operating envelope.
The programmed route represents the con-
straints from the flight plan (e.g., depart from
airport KLAX, cross VTU, etc.). In GT-CATS,
the flight plan route is assumed to be pro-
grammed correctly in the FMS; without this
assumption, a copy of the actual programmed
route would need to be included in the FMS
state space to be compared against the flight
plan in the LOE. This assumption allows for a
parsimonious representation of the pro-
grammed route information.

ATC ‘ II
Clearances

Operational
Guidelines

Programmed Route

Figure 65. Sources of constraints represented
in the GT-CATS LOE.

Another important assumption concerns the
operational guidelines for flying the 757/767.
In GT-CATS, operational guidelines, such as
the 250 knot/10,000 feet speedaltitude restric-
tion shown in figure 65, are assumed to be
correctly programmed in the FMS. This is
generally the case; thus, the assumption per-
mits GT-CATS’ LOE to omit an explicit rep-
resentation of operational guidelines, because
the guidelines are part of the programmed
route.
Figure 66 shows GT-CATS LOE for the
757/767 domain. The LOE consists of two

elements: ATC limits, and the programmed
route. ATC limits are the “short-term” limit
states of the LOE; the programmed route is the
sequence of “long-term” limit states. The
ATC limits include any binding values for
cleared heading, cleared altitude, cleared
speed, cleared vertical speed (although vertical
speed clearances are unusual), and whether the
aircraft is to intercept the programmed route.
In determining the binding constraints repre-
sented by the LOE, ATC limits override the
long-term “active-limit-state.”
The programmed route has three components,
as shown in figure 66: airports (the origin and
destination airports for the flight), a waypoint
list (a list of the planned waypoints along the
flight path), and speeaaltitude restrictions. A
speeaaltitude restriction can either be associ-
ated with a waypoint (e.g., cross RMG at 250
knots/8,000 feet), or not (e.g., do not exceed
250 knots below 10,OOO feet). The waypoint
structure in GT-CATS therefore includes a slot
for an associated crossing restriction. GT-
CATS determines the next speedaltitude
restriction by using the “phase” slot of the
particular speedaltitude restriction in conjunc-
tion with the limit altitude at the restriction.
The GT-CATS LOE is updated on each proc-
essing cycle. An update seeks to determine if
the currently active limit state has been passed.
If so, GT-CATS uses the “passed” slot to
indicate that the limit state no longer con-
strains the flight. As figure 66 shows, to
implement the LOE for both a lateral and ver-
tical profile, the concept of active limit state is
extended so that the active limit state has a
lateral component (Le., the active waypoint),
and a vertical component (i.e., the binding
speeaaltitude restriction). These two compo-
nents are both considered in the update proce-
dure. As an example, the speeaaltitude
restriction in figure 66 that is not associated
with a waypoint is 250 knots/10,000 feet
during cl imb-do not exceed 250 knots below
10,000 feet. If the waypoint crossing
restriction shown in figure 66 is 240
knots/8,000 feet during descent, then the climb
restriction will become part of the active limit
state first.

79

- LIMITING OPERATING ENVELOPE

ATC Limits \

Heading Altitude

Identifier

Latitude

Longitude

Runway

Runway Heading

Runway Elevation

Passed
Programmed Route

TrES
7 Waypoint List

O

WAYPOINT - r Identifier

Latitude i Longitude

Passed

Crossing Restriction I, *

*
7 LT-RESTR

Name

Limit Speed

Limit Altitude

Passed

Phase

Figure 66. The GT-CATS LOE.

The active limit state, which includes a
waypoint, and the next applicable
speed/altitude restriction, represents the current
goals for the flight-unless ATC intervenes.
ATC may issue a clearance for the aircraft to
fly a heading that takes it off the LNAV route
programmed in the FMS; ATC may also issue
a clearance for the aircraft to hold at an inter-
mediate altitude. These ATC directives are
encapsulated in the ATC limits portion of the
LOE, and always override their corresponding
portion of the active limit state when the LOE
is used to generate context specifiers.

Context Specifiers
Context specifiers are an important component
of the GT-CATS activity tracking process
because they form the link between the state
space, LOE, and the conditions from the OFM-
ACM instantiated in DUO. Context specifiers

are generated, in most cases, by comparing
information from the state space to informa-
tion from the LOE. These same context speci-
fiers are used as conditions for activating
nodes in DUO to generate expectations and
explanations. The following subsections
describe the context specifiers used in GT-
CATS.

Context Specifiers activated using aircraft
state variables
GT-CATS uses the following four context
specifiers associated with the aircraft state vari-
able msl-alt (mean sea level altitude):

(acrft-state alt above-limits)
(acrft-state alt within-limits)
(acrft-state alt below-limits)
(acrft-state alt outside-limits).

80

.

They are important for determining when the
functions corresponding to climbing,
descending, and holding altitude are active.
Altitude is “within-limits” when, in the case
where a crossing restriction at a downpath
waypoint is the binding constraint on altitude,
altitude is no more than 60 feet above or 50
feet below the limit altitude. When no such
crossing restriction is binding, altitude is
“within-limits” when the altitude is no more
than 60 feet above or 50 feet below the cleared
altitude. Altitude is “outside-limits” and
either “above-limits’’ or “below-limits” at all
other times.
GT-CATS also activates the following twb
additional context specifiers from the aircraft
state variable msl-alt. They are used as a
heuristic for expecting a V/S mode-selection,
based on the notion that V/S mode is good for
small adjustments in altitude, and smoothing
altitude acquistions. GT-CATS compares the
variable msl-alt to the cleared altitude to
generate one of these:

(acrft-state alt more-than-2000-ft-from-tgt)
(acrft-state alt less-than-2000-ft-from-tgt).

GT-CATS activates the next five context
specifiers from the aircraft state variable agl-
alt (above ground level altitude):

(acrft-state abs-alt above-origin-apt)
(acrft-state abs-alt at-or-above- 1000)
(acrft-state abs-alt at-or-above-3000)
(acrft-state abs-alt at-or-below-1000)
(acrft-state abs-alt at-or-below-3000).

These context specifiers are important for
determining when a particular subphase is
active. Because the value of the agl-alt state
variable is dependent on the terrain, these
context specifiers are subject to some
variation.
GT-CATS activates two important context
specifiers from the aircraft state variable hdg
(heading):

(acrft-state hdg within-limits)
(acrft-state hdg outside-limits).

These context specifiers are used for activating
either “turn-onto-heading” or “hold-
heading” functions. GT-CATS uses two
different methods to activate one of these,
depending on whether there is a cleared
heading specified in the ATC limits portion of
the LOE or not. If a cleared heading is given,
then heading is “within-limits’’ when the
aircraft heading is within plus-or-minus 0.5
degrees of the cleared heading. If a route
intercept on a heading left to pilot discretion is
required, GT-CATS uses predictive functions
to produce “within-limits” context specifiers
when the heading intercepts the programmed
route, or the heading matches the course to the
next waypoint.
GT-CATS activates two context specifiers from
aircraft state variable spd (airspeed):

(acrft-state spd within-limits)
(acrft-state spd outside-limits).

These context specifiers summarize the rela-
tion between the aircraft airspeed and the
cleared speed, or if there is no cleared speed
specified, the VNAV target speed. They are
useful for determining when speed adjust-
ments are expected in DUO. Note that the
VNAV target speed variable is just a shortcut
to accessing the speeaaltitude restriction that is
part of the LOE’s active limit statein the LOE.

Context Specifiers activated using autoflight
system state variables
Context specifiers activated from autoflight
system (AFS) state variables express the possi-
ble mode configurations. At a given time, the
context specifier that corresponds to the state
of the variable is activated, along with the
appropriate “not-” context specifiers, since
the possible engaged and armed modes are
mutually exclusive. These context specifiers
are important for expecting mode selection
and setup. GT-CATS does not require the
LOE to activate these context specifiers.
GT-CATS can activate eight context specifi-
ers from the AFS state variable roll-engd
(engaged roll mode). These context specifiers
summarize the engaged roll mode conditions

81

(“to” means “Takeoff mode,” a specialized
mode used during takeoff):

(afs-state roll-engd to)
(afs-state rolI-engd not-to)
(afs-state roll-engd hdg-sel)
(afs-state roll-engd not-hdg-sel)
(afs-state roll-engd lnav)
(afs-state roll-engd not-lnav)
(afs-state roll-engd hdg-hold).

As an example of how most AFS state context
specifiers work, consider the following: if roll-
engd is HDG SEL, GT-CATS activates the
(afs-state roll-engd hdg-sel) context specifier,
along with (afs-state roll-engd not-lnav), (afs-
state roll-engd not-hdg-hold), and (afs-state
roll-engd not-to). Thus, GT-CATS activates
context specifiers that reflect which mode is
engaged, along with context specifiers that
reflect the fact that all mutually exclusive
modes are not engaged.
GT-CATS uses the AFS state variable roll-
armed (armed roll mode) in a similar manner.
These context specifiers summarize the armed
roll mode conditions:

(afs-state
(afs-state
(afs-state
(afs-state

roll-armed to)
roll-armed not-to)
roll-armed lnav)
roll-armed not-lnav).

From the AFS state variable pitch-engd
(engaged pitch mode), GT-CATS activates the
following context specifiers to summarize the
engaged pitch mode conditions (again, “to”
means takeoff mode; “vs” means vertical
speed):

(afs-state pitch-engd to)
(afs-state pitch-engd not-to)
(afs-state pitch-engd vnav-path)
(afs-state pitch-engd not-vnav-path)
(afs-state pitch-engd vnav-spd)
(afs-state pitch-engd not-vnav-spd)
(afs-state pitch-engd vnav)
(afs-state pitch-engd not-vnav)
(afs-state pitch-engd vs)
(afs-state pitch-engd not-vs)
(afs-state pitch-engd alt-hold)

(afs-state pitch-engd not-alt-hold)
(afs-state pitch-engd spd)
(afs-state pitch-engd not-spd)
(afs-state pitch-engd alt-cap)
(afs-state pitch-engd not-alt-cap)

GT-CATS activates the following context
specifiers to predict capture of the cleared
altitude given in the LOE; thus, these context
specifiers involve the use of both an AFS state
variable and the LOE. The first indicates that
the aircraft is capturing the altitude required
according to the LOE; the second indicates
that the aircraft is capturing a different
altitude:

“

-

(afs-state pitch-engd alt-cap-rqd-alt)
(afs-state pitch-engd not-alt-cap-rqd-alt).

Two context specifiers are activated using the
AFS staie variable pitch-armed (armed pitch
mode). These context specifiers summarize the
armed pitch mode conditions:

(afs-state pitch-armed vnav)
(afs-state pitch-armed not-vnav).

Ten context specifiers are activated from AFS
state variable auto-thr-engd (engaged
autothrottle mode). These context specifiers
summarize the conditions relating to the
engaged autothrottle mode:
(afs-state athr-engd n l)
(afs-state athr-engd not-n1)
(afs-state athr-engd thr-hold)
(afs-state athr-engd not-thr-hold)
(afs-state athr-engd fl-ch)
(afs-state athr-engd not-fl-ch)
(afs-state athr-engd idle)
(afs-state athr-engd not-idle)
(afs-state athr-engd spd)
(afs-state athr-engd not-spd).

GT-CATS activates four context specifiers
from the AFS state variable cmd-mode
(autopilot command mode). These context
specifiers indicate the current command mode
of the autopilot:

(afs-state cmd-mode fd)

82

(afs-state cmd-mode not-fd)
(afs-state cmd-mode cmd)
(afs-state cmd-mode not-cmd).

Even though the flight director is normally
always on, GT-CATS considers flight director
and autopilot CMD mode to be competing
modes because the flight director is not
required to use CMD mode.
The last set of context specifiers GT-CATS
produces to reflect the status of 7571767
autoflight modes are activated from AFS state
variable tsp (thrust select panel). These context
specifiers indicate whether the pilot has
selected climb thrust or not:

(afs-state tsp clb)
(afs-state tsp not-clb).

The remaining context specifiers activated
from AFS state variables reflect the MCP-
selected values of heading, altitude, airspeed,
and vertical speed, relative to cleared values
from the LOE, rather than the status of modes.
These context specifiers activated from the
AFS state variable mcp-spd (MCP-selected
airspeed) summarize whether the MCP speed
reflects a target speed specified in the LOE:

(afs-state mcp-spd within-limits)
(afs-state mcp-spd outside-limits).

Similarly, two context specifiers summarize
whether the MCP heading matches the cleared
heading specified in the LOE. GT-CATS uses
the AFS state variable mcp-hdg (MCP-selected
heading) to activate these:

(afs-state mcp-hdg within-limits)
(afs-state mcp-hdg outside-limits).

GT-CATS uses the AFS state variable mcp-alt
(MCP altitude) to activate these context
specifiers to summarize whether the MCP
altitude reflects the cleared altitude specified in
the LOE:

(afs-state mcp-alt within-limits)
(afs-state mcp-alt outside-limits).

Also, GT-CATS uses mcp-vs (MCP vertical
speed) to activate context specifiers that sum-
marize whether the MCP vertical speed is
properly set:

(afs-state mcp-vs within-limits)
(afs-state mcp-vs outside-limits).

These vertical speed context specifiers are
rarely needed, because ATC seldom issues
clearances that specify a particular vertical
speed.

Context Specifiers activated to summatize
FMS state
GT-CATS uses a number of context specifiers
to summarize the operating context in light of
FMS state variables. The first set of these are
activated from the FMS state variable vnav-tgt-
alt (VNAV target altitude). These context
specifiers indicate whether the programmed
vertical profile corresponds to the current
desired altitude, as expressed by either a
restriction in the active limit state of the LOE,
or the cleared altitude:

(fms-state vert-profile progrmd)
(fms-state vert-profile not-progrmd).

These context specifiers are important as
conditions for using VNAV, because VNAV
cannot be used if a valid vertical profile is not
programmed.
GT-CATS generates the following two context
specifiers from the FMS state variable vnav-
tgt-spd (VNAV target speed). These context
specifiers summarize whether the current FMS
target speed is consistent with the current
cleared speed, or the active limit state speed:

(fms-state tgt-spd within-limits)
(fms-state tgt-spd outside-limits).

The remaining FMS-related context specifiers
concern the capability of the FMS, as pro-
grammed, to fly the desired lateral profile.
GT-CATS activates them using predictive
functions that compute whether the pro-
grammed route is consistent with the current

83

clearance and whether the current heading
intercepts the programmed route:

(fms-state lat-profile progrmd)
(fms-state lat-profile not-progrmd)
(fms-state lat-profile-intcpt progrmd)
(fms-state lat-profile-intcpt not-progrmd)

These context specifiers are useful as condi-
tions for using LNAV rather than HDG SEL
mode to fly the lateral profile.

Context Specifiers activated to summarize
phase of flight
GT-CATS requires one more set of context
specifiers to use as conditions for activating a
particular phase and subphase of flight. These
context specifiers stem from the aircraft state
variables msl-alt (Mean Sea Level Altitude)
and agl-alt (Above ground level altitude), as
well as the FMS state variable vnav-event-dist
(VNAV event distance):

(current-phase climb in-progress)
(current-phase cruise in-progress)
(current-phase descent in-progress)
(aircraft-position less-than-5-miles-to top-of-
descent)
(aircraft-position more-than-5-miles-to top-
of-descent)
(aircraft-position less-than-5-miles-to end-of-
descent)
(aircraft-position more-than-5-miles-to end-
of-descent)

Overall, this set of context specifiers is suffi-
cient for representing the conditions used in
the GT-CATS OFM-ACM for the 757/767. In
the next subsection, GT-CATS’ DUO, con-
structed from the 757/767 OFM-ACM, is
described.

Dynamically Updated OFM-ACM
(DUO)
DUO provides GT-CATS’ representation of
current pilot activities. DUO is instantiated
from the OFM-ACM as described in the previ-
ous chapter. The OFM-ACM file structures

used to instantiate DUO are collected in
Appendix C.

DUO is updated on each processing cycle to
reflect the current state of pilot-automation
interaction. The first step in GT-CATS’ DUO-
updating process is to activate a complete of
set of context specifiers using the current state
space and LOE. GT-CATS then searches DUO
to determine which nodes in DUO should
attain active (or obsolete) status.

Action manager
The GT-CATS action manager handles
detected pilot actions. It works as described in
the previous chapter, with one exception. In
implementing GT-CATS for the Boeing
757/767, it became necessary to track two dis-
tinct types of actions. The GT-CATS action
manager handles the first type (mode switch
presses) in the general manner. The Boeing
757/767, however, also has the knobs used to
select values on the MCP. GT-CATS’ action
manager was therefore extended to also detect
when these actions were performed as
expected, but an incorrect value was set.

*

In GT-CATS, these so-called “wrong-setting
actions” are handled through an initial check
of the MCP-selected value against the limiting
operating envelope. When a “dial-” action is
detected, an active instance of the action is first
located in DUO (as with all actions). The
MCP-selected value is checked and, if correct,
the action is explained in the usual way. If the
value is not correct, the action is assigned the
status “explained-wrong-setting” to indicate
that the action was expected, and could be
explained as correct if not for the wrong value
being set. The effect of the new status desig-
nator is to allow the action to be re-activated
on the next update of DUO, so that GT-CATS
expects a correction of the MCP-selected value
in question.

Examples of GT-CATS operation
This section presents examples of GT-CATS
operation using data exerpted from the
empirical evaluation described in the next

84

chapter. Figure 67 shows the GT-CATS inter-
face; the buttons at the upper left of the inter-
face enable the user to raise or lower the win-
dows that display the state space, the limiting
operating envelope, activity tracking output,
and DUO. In figure 68, the DUO display win-
dow has been brought to the foreground. The
simulation time is displayed at the extreme
upper left. The ATC clearance that is currently
reflected in GT-CATS’ LOE is displayed
below the interface controls. At the bottom left
of the interface is a thumbnail view of the
subphase currently active in DUO that can be
used to adjust the portion of DUO shown in
the large DUO window.

The situation depicted in figures 67 and 68 is
now examined more closely. Figure 69 shows
the most recent GT-CATS output. Time values
in the output window are displayed using GT-
CATS’ internal system time (expressed in
seconds since midnight). GT-CATS prints the
active ATC clearance in red. Green lettering
indicates manual pilot actions GT-CATS
expects; black lettering indicates expectations
for undetectable actions.
Blue lettering denotes an explanation. In
figure 69, GT-CATS has detected and
explained two of the three actions it expected
pilots to perform to comply with the recent

clearance (i.e., dial-mcp-hdg and push-vnav-
sw). Black lettering is used to display a notice
that the third action (i.e., dial-mcp-alt) has not
yet been detected.

Figure 70 shows the state space at the time
shown in figure 69; State variables are
grouped into aircraft state variables, AFS state
variables, and FMS state variables, from top to
bottom. Figure 71 shows the limiting operat-
ing envelope (LOE). Values at the top com-
prise the short-term limit state; values at the
bottom are the long-term limit states. Check
marks indicate that a limit state has been
passed. Table 2 shows the context specifiers
activated according to the values expressed in
the state space and limiting operating
envelope.

In addition to generating context specifiers at
time 351 13, GT-CATS’ action manager also
generates an explanation for the push-vnav-sw
action detected at that time. Table 3 shows
output printed in the Lisp environment indi-
cating that the action manager has explained
the action. Other output shown in table 3
shows the action manager event to check that
all the expectations have been met.

85

-
0-1 o n
0 2 0
4

I1 11

+ V I J >

o w w u

W J
J U U

a i i n

u a a w

0 0 m m N N

11 11

U P

X L O
1 1

P O w w W W

w w
J 1 v u

o a

a a

-

;/ 5
L

0

a N 0

5 11

4 m

m w G>
I d

' r w 0 1

a>
-3 m U m

0
J . m N 00

-I I1
I-

XO X

+ I W >

u n

au

E 2
a

N

m
4

m

m

m

h

m

0

W
3

I- LL
3
0

E

0

a
OD I

m

m

3

m

m

U
P l-

l- a
3
m

0 0
0
0 r(

a
m N

P
5
4 0

0 0 0
0 0
o a d N

t n h N r (
a a

U Y
c s o u u u
m v) u v
u n

Figure 67. GT-CATS interface.

86

Figure 68. GT-CATS interface with DUO window exposed.

87

TIME 55080-- TUfW LEFT HEADING 290-- CLIME TO 10000 FEET
TIME 35+81:)-- CT-IZ&T.S' EXPEIZTZ ACT IrJt.4 F'USH-'I.I'~.IA\J'-!ZL.J
T I ME 35(>80-- lI;T-tl&TS EXPECTS AIZT ION 11 1 AL-M[:P-ALT

T 1 t.lE 35(j8+-- CiT-iZATS EXPECTS ACT 1 I]N 11 I AL-MIZP-HDI;
TIME 35080-- CT-CATS EXPECTS ACTION MON-HDG-SEL-ADI-ANNC

TIME 3505%- GT-CATS EXPLAINS ACTION 6070--DIAL-MCP-HDG-- AS
SUPPORTING SUBTASK 5073-SET-MCP-HDG- WHICH SUPPORTS TASK
4046--MON-ADJ-HDG-SEL-TURN
TIME 55115-- GT-CATS EXPLAINS ACTION 6093--PUSH-VNAV-SW-- AS

4060--SETUP-ENG-VNAV
TIME 35113-- GT-CATS DID NOT DETECT ACTION 6092-- DIAL-MCP-ALT--
AFTER 30 SECS

3 SUPPORT I NG SUET ASK 5103--EHG-VNAV-- WHICH SIJPFORTS TASK

Figure 69. Enlarged view of GT-CATS output.

TIME = 351 13
LAT = 33.75 LONG = -84.37
HDG = 345,23
AGL-ALT = 4994.48 MSL-ALT = 5000,50

SPD = 249.59 VS = 3.01
ROLL-ENGD = hdg-sel ROLL-ARMED = N I L

PITCH-ENGD = a1 t - ho ld PITCH-ARMED = N I L
CMD-MODE = cmd QUTO-THR-ENGD = spd

MCP-HDG = 345.00 MCP-ALT = 5000.00
MCP-SPD = 249.59 MCP-US = 3258.00

Td-PASSED = 0 ToD-PASSED = 0
VNAV-TGT-ALT = 18000,OO VNAV-TGT-SPD = 210.00
VNAV-SPD-INT = 0 VNAV-EVENT-DIST = 169566,53
VNAV-CAPTURE = 1 DESC-NOW-ACTIVE = 0
ON-TRACK = 0 ACTIVE-WPT = 4
NEXT-WPT = 5 PAST-LRST-WPT = 0

Figure 70. Enlarged view of GT-CATS' state space window.

CLEARED-HDG = 290 CLEARED-ALT = 10000
CLEARED-SPD = 250 CLEARED-VS = N I L

PRSSED

J AIRPORT KATL 08L 33.64.-84.43
RWY-HDG = 92.0 RWY-ELEV = 1026.0

4 WPT WETWO 33.73,-85.12

5 WPT TDG 33.58,-86.04

AIRPORT KBHM 5 33.56, -86.75
RWY-HDG = 56.0 RWY-ELEV = 644.0

climb 210/4026 J
climb 250/10000

descent 250/10000

descent 170/2600

Figure 71. Limiting Operating Envelope contents.

88

Table 2. Context specifers at time 35113.

CONTROLLED-SYSTEM time is 35113
Context Specifiers at time 35113:

(ACRFT-STATE VS WITHIN-LIMITS)
(ACRFT-STATE SPD WITHIN-LIMITS)
(ACRFT-STATE ABS-ALT AT-OR-ABOVE-3000)
(ACRFT-STATE ALT MORE-THAN-2OOO-FROM-TGT)
(ACRFT-STATE ALT BELOW-LIMITS)
(ACRFT-STATE ALT OUTSIDE-LIMITS)
(ACRFT-STATE HM; OUTSIDE-LIMITS)
(AFS-STATE TSP CLB)
(AFS-STATE MCP-HDG OUTSIDE-LIMITS)
(AFS-STATE MCP-ALT OUTSIDE-LIMITS)
(AFS-STATE MCP-SPD WITHIN-LIMITS)
(AFS-STATE CMD-MODE NOT-FD)
(AFS-STATE CMD-MODE CMD)
(AFS-STATE ATHR-ENGD NOT-IDLE)
(AFS-STATE ATHR-ENGD SPD)
(AFS-STATE ATHR-ENGD NOT-FL-CH)
(AFS-STATE ATHR-ENGD NOT-THR-HOLD)
(AFS-STATE ATHR-ENGD NOT-N1)
(AFS-STATE PITCH-ARMED NOT-VNAV)
(AFS-STATE PITCH-ENGD NOT-VNAV-PATH)
(AFS-STATE PITCH-ENGD NOT-ALT-CAP-RQD-ALT)
(AFS-STATE PITCH-ENGD NOT-ALT-CAP)
(AFS-STATE PITCH-ENGD NOT-SPD)
(AFS-STATE PITCH-ENGD NOT-VNAV-SPD) .

(AFS-STATE PITCH-ENGD NOT-VNAV)
(AFS-STATE PITCH-ENGD NOT-VS)
(AFS-STATE PITCH-ENGD ALT-HOLD)
(AFS-STATE ROLL-ARMED NOT-TO)
(AF'S-STATE ROLL-ARMED NOT-LNAV)
(AFS-STATE ROLL-ENGD NOT-TO)
(AFS-STATE ROLL-ENGD NOT-HDG-HOLD)
(AFS-STATE ROLL-ENGD NOT-LNAV)
(AFS-STATE ROLL-ENGD HE-SEL)
(FMS-STATE VNAV-SPD-INT OFF)
(FMS-STATE TGT-SPD OUTSIDE-LIMITS)
(FMS-STATE VERT-PROFILE PROGFMD)
(FMS-STATE LAT-PROFILE-INTCPT NOT-PROGRMD)
(FMS-STATE LAT-PROFILE NOT-PROGRMD)
(E'MS-STATE VERT-PROFILE-INTCPT NOT-PROGRMD)
(CURRENT-PHASE CLIMB IN-PROGRESS)

Changing node statuses Done
Highlighting Done

89

Table 3. Action manager output at time 351 13.

,,, ... Processing detected action: (VNAV N I L)
************** explaining an action ***************
GT-CATS explains action 6093, push-vnav-sw,
as supporting subtask 5103, eng-vnav,
which supports task 4060, setup-eng-vnav

(6092 6059)
action 6093, push-vnav-sw not on waiting list
(6092 6059)
action 6092, dial-mcp-alt, not detected after 30 secs
(6092 6059)
action 6070, dial-mcp-hdg not on waiting list
@

Jsetup-vert-profile I

I
Figure 72. Closeup of DUO explaining push-vnav-sw.

T 1 ME 35151-- C L I t.iB TO CRU I SE ALT I TIJDE FLISO-- TURN LEFT HEADING
2'45 PR:OI:EEII l3t.I i:i]l-IRSE

TIME 35151-- GT-CATS EXPECTS ACTION MON-HDG-SEL-ADI-ANNC

TIME 3516O-- GT-CATS EXPLAINS ACTION 6070--DIAL-MCP-HDG-- AS

4046--MON-ADJ-HDG-SEL-TlJRN
TIME 35194-- GT-CATS DETECTS INACTIVE PUSH-VNAV-SW ACTIONS--
(6090 6093 6107 6112 6118 6121 6130)

TIME 35194-- GT-CATS DID NOT DETECT ACTION 6094-- DIAL-MCP-ALT--
AFTER 30 SECS
TIME 35179-- GT-CATS EXPLAINS ACTION 6094--DIAL-MCP-ALT-- AS
SUPPOETIbIC SUETASK 5I05--ADJ-MCF-kLT-- WHICH SUPFORTS TllSK
4061-MON-AD J-VNAV-SPD-CL I ME

TIME 35199-- GT-CATS EXPLAINS fiCTION ~O~~--PUSH-LNAD-SW-- AS

4047--ARM-LNA1d
TIME 35206-- GT-CATS EXPECTS ACTION MON-LNAV-ARMED-ADI-ANNC

MODE-SELECT I ON 3022-- VNAV-SPD-CL I tlE

T I ME 35151-- IST-I::ATS ExPEIlTS AilTICiN 11 I&L-t.lCP-ALT

T 1b.fE 35.151-- GT-CATS E><PEI:TS fiizT 1014 11 I AL-MCP-HDI;

w SLIPPORTING SUETASK 5073--SET-MCP-HDG-- WHICH SUPPORTS TASK

7 -
T 1 351'3'3-- I:T-C:ATS EXPEIZTS QIZT I I2f.j Fi~SH-Lt.Ifi'Ir'-SlJ

':;; SUPPORT1 NC SUETASK 5075--ARM-LNAV-- b4H I CH SUPPORTS TASK -. .

TIME 352.18-- ACT1 O1.l tJ093-- PlJSH-\.!NA\)-S1d-- REVISED TO SUPPORT

Figure 73. Sample output at time 35218.

90

.

In the DUO window, the detected push-vnav-
sw action is color-coded purple, indicating it
has been successfully explained. Figure 72
shows a close-up view of this portion of the
DUO window. The green color-coding in
figure 72 shows that GT-CATS is still
expecting the dial-mcp-alt action.
Figure 73 shows some additional output later
in the same data set shown earlier. GT-CATS
first expected the dial-mcp-alt and dial-mcp-
hdg actions to meet the new clearance (climb
to cruise altitude FL180-turn left heading
245 and proceed on course). Because applica-
ble modes for accomplishing this are already
engaged (i.e., VNAV and HDG SEL; figure
74), the pilot need only set the new target
values for heading and altitude. In this exam-
ple, the pilot not only sets the new required
target values, but also presses the VNAV
engagement switch (see figure 73). The push-

TIME = 35218

vnav-sw was not expected because VNAV was
already engaged. GT-CATS later revises an
explanation the for this unnecessary action, as
described below.
Before GT-CATS applies the revision process
to the push-vnav-sw action, the aircraft turns
onto the required heading, and can intercept
the programmed LNAV route as directed in
the clearance. At this time, GT-CATS expects
the pilot to arm LNAV by pushing the LNAV
mode MCP switch (see figure 73). The pilot
does perform the push-lnav-sw action, and
GT-CATS explains it accordingly.
By this time, GT-CATS is ready to apply the
revision process to the unexpected push-vnav-
sw action. The revision process finds that the
action can support the use of VNAV mode, so
it explains the action accordingly. The output
from GT-CATS’ action manager is shown in
table 4 and figure 75.

LAT = 33.79 LONG = -84.52
HDG = 245.23
AGL-ALT = 10003.49 MSL-ALT = 10009.49

SPD = 253.16 US = 3410.56
ROLL-ENGD = hdg-sel ROLL-ARMED = l n a v

PITCH-ENGD = vnav-spd PITCH-ARMED = NIL
CMD-MODE = cmd QUTO-THR-ENGD = spd
MCP-HDG = 245.00 MCP-ALT = 18000.00
MCP-SPD = 251.66 MCP-US = 4000.00

ToC-PFISSED = 0 ToD-PASSED = 0
VNAV-TGT-ALT = 18000.00 VNAV-TGT-SPD = 250.00
VNAV-SPD-INT = 0 VNAV-EVENT-DIST = 121979.22
VNAV-CAPTURE = 1 DESC-NOW-ACTIVE = 0
ON-TRACK = 0 ACTIVE-WPT = 4
NEXT-WPT = 5 PAST-LAST-WPT = 0

Figure 74. State space at time 35218.

Table 4. Action manager output showing successful revision of push-vnav-sw.

***** attempting to revise actions (6090 6093 6107 6112 6118 6121 6130) *****
revising action 6093
action 6093, push-vnav-sw, revised to support mode-selection 3022, vnav-spd-climb
***** revision complete! *****

91

setup-vert-profile
dial-mcp-alt 1

I , green 1
1 blue (revised) I ad.i -mcP-a 1 t Hdial-mcp-alt I

Figure 75. Closeup of DUO showing successful revision of push-vnav-sw action.

Figure 76. GT-CATS output window at time 35908.

92

Data from later in the same flight exemplifies
other important features of the GT-CATS
activity tracking process. The output from this
segment, showing the responses to two clear-
ances, is shown in figure 76. In response to the
first clearance, GT-CATS expects push-vnav-
sw and dial-mcp-alt. GT-CATS detects and
explains the push-vnav-sw action; it also
detects and explains the dial-mcp-alt action,
but notes that the altitude set does not match
the cleared altitude. GT-CATS therefore
expects an adjustment to the set altitude. The
pilot performs the action, and GT-CATS again
explains it.
The second clearance shown in figure 76 *

requires changes in heading, altitude, and
airspeed. GT-CATS expects that the pilot will
continue to use VNAV mode, and that the
Speed Intervention submode will be used to
adjust the speed (i.e., GT-CATS expects push-
spd-sel-sw). GT-CATS also expects a transition
to HDG SEL, and a set heading of 235.
As figure 76 shows, the pilot does engage HDG
SEL and enter the new heading; GT-CATS
explains these actions accordingly. The pilot
also enters the required altitude, and GT-CATS
explains the dial-mcp-alt action as supporting
the continued use of VNAV mode. The pilot,
however, transitions to FL CH by pressing the
FL CH mode engagement switch. In this case,

the dial-mcp-alt action actually supports the
use of FL CH. (In the evaluation described in
Chapters VI and VII, GT-CATS’ explanation
is logged as incorrect, even though the action
could have supported the continued use of
VNAV mode.)
In support of FL CH mode, the pilot performs
the dial-mcp-ias action. Because GT-CATS did
not expect the pilot to transition to FL CH
mode, the dial-mcp-ias action is also unex-
pected. Figure 77 shows how GT-CATS
indicates unexpected actions in yellow. Note
that the dial-mcp-ias speed-adjustment action
also supports the init-spd-intervtn task; GT-
CATS’ revision process is charged with
disambiguating which instance of the dial-mcp-
ias action can best explain the action. Also,
GT-CATS flags the push-spd-sel switch as late
because it has not been detected.
The last portion of this example shows what
happens when GT-CATS attempts to revise the
unexpected dial-mcp-ias and push-fl-ch-sw
actions. As shown in figure 78, GT-CATS suc-
cessfully revises these actions to support the
use of FL CH to perform the descent. Table 5
shows the action manager output in the Lisp
environment, also indicating that the actions
are successfully explained by the revision
process.

93

set-mcp-alt -dial-mcp-alt I
enz-f 1 -ch -7 P ush-fl-ch-std 1

i Jmon-fl-ch-desc-profile
ad.i -mcp-a It Hdia l -mcp-a l t 1
adj-mcp-ias -7 dia l -nmias I
mon-fl-ch-enzd Hmon-fl-ch-adi-annc I

llpush-vnav-sw 1 arm-vnav
larm-vnav

mon-vnav-a=- mon-vnav-armed-adi-ann4

Jsetup-vert-profile I
set-mcp-alt -dial-mcp-alt setup-ene-vnav I
enz-vnav Mush-vnav-sw 1

/ I init-early-descent)--I enn-desc-now 1

. I purple EI green1 I yellow mon-vnav-spd-Profile I
Hdia l -mcp-a l t 1

L fion-ad.i -vnav-spd-desc
mon-vnav-spd-adi-annc I mon-vnav-spd=y

Figure 77. Closeup of GT-CATS' DUO window, showing unexpected actions highlighted in yellow.

c_ - B

L.

SLOW

AS

_ _ ~

4193--SET<lP-ENG-HDG-SEL
TIME 35890-- GT-CATS EXPLAINS ACTION 6345--DIAL-MCF-ALT-- AS
SUPPORTING SUETQSK 5416--ADJ-MCP-ALT-- WHICH SUPPORTS TASK
4210--MOH-ADJ-VNA'-~ATH-DESC
TIME 35907-- GT-CATS DETECTS INACTIVE PUSH-FL-CH-SW ACTIONS--
(6337 > .

TIME 35907-- GT-CATS DID NOT DETECT ACTION 6349--
PUSH-SPD-SEL-SW-- AFTER 30 SECS
TIME 35908-- GT-CATS DETECTS INACTIVE DIAL-MCP-IAS CICTIONS--
(6339 6350 6359 6364 6370 6377 6382)

TIME 35931-- GT-CATS EXPECTS ACTION MON-FL-CH-ADI-ANNC
TIME 35931-- GT-CATS EXPECTS ACTION MON-HDG-SEL-ADI-ANNC

'- TIME 35931-- QCTION 6337-- PUSH-FL-CH-SW-- REVISED TO SIUPPORT
MODE-SELECTION 3065-- FL-CH-DESCENT
TIME 35931-- ACTIOtl 63?9-- DIAL-MCP-IPS-- REVISED TO SIJPFORT
MODE-SELECTION 3065- FL-CH-DESCENT - _

Figure 78. GT-CATS output showing successful application of the revision process to explain the
push-fl-ch-sw and dial-mcp-ias actions.

94

Table 5. Action manager output from the revision process.

***** attempting to revise actions (6337) *****
revising action 6337
action 6337, push-fl-ch-sw, revised to support mode-selection 3065, fl-ch-descent
***** revision complete! *****
***** attempting to revise actions (6339 6350 6359 6364 6370 6377 6382) *****
revising action 6339
action 6339, dial-mcp-ias, revised to support mode-selection 3065, fl-ch-descent
***** revision complete! *****

Summary
This chapter described an implementation of
GT-CATS to track the activities of pilots using
modes of automation to navigate. It first pre-
sented the OFM-ACM developed for the
B757/767. It then described the state space and
limiting operating envelope, and DUO-an
instantiation of the OFM-ACM that is anno-
tated in real time to track pilot activities. The
chapter next showed how the state space and
limiting operating envelope are used to acti-
vate context specifiers that enable GT-CATS to
predict pilot mode usage activities. Pilot
actions detected by GT-CATS are processed
by the action manager.

The action manager explains expected actions
based on its expectations. Unexpected actions
are either explained by the revision process as
supporting an alternative mode selection
applicable in the current situation, or identi-
fied as possible errors. Expectations not met
by pilot actions are also flagged. Finally, the
chapter presents examples of GT-CATS
operation exerpted from empirical evaluation
data. The next chapter describes the evalua-
tion procedure and experimental materials.

95

6. Empirical Evaluation

Introduction
GT-CATS was implemented to demonstrate
and evaluate the effectiveness of the GT-CATS
methodology for explaining how 757/767
pilots use complex flight deck automation for
navigation. This chapter first gives some back-
ground on the evaluation methods used by
other researchers to evaluate intent inferencing
and aiding systems. It then describes the GT-
CATS evaluation study, its aims, methods and
expected results.

Background
Before presenting the GT-CATS validation
plan, some background on evaluations per-
formed on other knowledge-based systems is
provided. By and large, such systems are
evaluated in an ad hoc fashion. Often a sys-
tem is termed “valid” merely because the
overall performance of the system is in some
sense “similar” to that of a domain expert.
Jones, Mitchell, and Rubin (ref. 90) found this
to be a prevalent approach. In their review of
validation methods, they begin by rejecting
Schank and Abelson’s (ref. 47) assertion that
merely implementing a theory on a computer
validates it as effectively characterizing the
process it is modeling. They refute the claims
of expert systems designers who believe that
because their system solves a given problem in
a way similar to that of a human expert, the
system represents a valid methodology for
solving such problems in the given domain.

In systems that attempt to infer the intentions
of a human operator, researchers have used the
results of studies on the aiding component as
an implicit measure of the validity of the
understanding component. For example, Funk
and Lind (ref. 91) find their Agent-Based
Pilot-Vehicle Interface effective because pilots
were able to perform better with it than with a
conventional interface. They also use expert
opinion to bolster support for their
methodology.

OPAL, the intent inferencing system used to
understand pilot’s intentions in the Pilot’s
Associate project, was initially validated in the
context of a small process control system (ref.
29). Experimental subjects controlling the
system were probed, during the course of the
interaction, with messages describing plans and
goals from the set of plans and goals inferred
by OPAL,. Each probe required a yes or no
response from the subject. Using a design that
also included random probes, the principal
hypothesis fokulated for the validation
experiment was that subjects would produce a
reliably greater proportion of yes responses to
the OPAL-generated probes than that for the
random probes. Experimental data confirmed
this hypothesis. The validation procedure
included several additional analyses to exam-
ine subject effects, learning effects due to the
unfamiliar probes used, and configuration
effects of the experimental testbed.
Jones et al. (ref. 90) develop a rigorous meth-
odology for statistically evaluating the per-
formance of ACTIN, the understanding com-
ponent of OFMspert. Their approach to
evaluation uses ACTIN’S approach to under-
standing intentions as the basis for judging its
validity. ACTIN is said to understand operator
actions when it infers support for the same
functions, subfunctions, and tasks that a
human does. They clarify that the “human”
referred to here may be a domain expert per-
forming a post hoc analysis, or the operator
verbalizing his or her intentions concurrently
with actions. Jones et al. therefore use a two-
stage approach to validating their system. In
the first stage, each operator action was
analyzed by a domain expert and compared
with ACTIN’S interpretation of the same data.
In the second stage, concurrent verbal proto-
cols collected from experimental subjects were
compared to the interpretations offered by
ACTIN. By using this two-stage process,
problems with expert comparisons (refs. 92
and 93) and potential deficiencies with verbal
protocol analysis (ref. 94) are not, by them-
selves, allowed to sway the analysis.

97

Evaluation of GT-CATS
The GT-CATS evaluation study sought to
assess the effectiveness of GT-CATS’ activity
tracking method in the context of a real-time
simulation of the Boeing 757/767 autoflight
system. Ten type-rated pilots from a major air
carrier served as subjects for the study. The
study was preceded by a pilot study, which
used five type-rated pilots familiar with the
goals of the GT-CATS evaluation, to ensure
realism and feasibility of the materials and
procedures employed in the formal evaluation.
The GT-CATS evaluation, like the ACTIN
evaluation, uses GT-CATS’ approach to
tracking operator activities as the basis for
judging its validity. GT-CATS predicts and
explains actions correctly when it identifies the
task and mode selection that the action sup-
ports. However, the experimental context of
mode usage in the glass cockpit affords the
unique opportunity to verify that a pilot action
supports a task associated with a hypothesized
mode selection by examining the state of the
automation: a pilot action is known to support
a valid mode selection if the control automa-
tion is engaged in that mode. Thus, the mode
structure of the automation defines correct and
incorrect actions, and minimizes reliance on
expert assessments and verbal protocols.

The GT-CATS activity tracking process gives
rise to two sets of possible outcomes from
which performance measures are derived. One
set of outcomes results when an action is
expected, the other when an actual operator
action is detected. These outcomes, described
in detail later in this chapter, serve as the basis
for evaluating GT-CATS’ performance, rather
than the indirect measures of improved opera-
tor performance with an aiding system that
uses the output of an intent inferencer, or the
operator’s perceived usefulness of the aid.
Furthermore, expert assessment of GT-CATS’
activity tracking outcomes is ancillary,
because examination of the state of the auto-
mation reveals whether GT-CATS’ expecta-
tions and explanations are valid.

GT-EFIRT
The evaluation was performed using a Boeing
7571767 part-task simulator, called the Georgia
Tech EIectronic Flight Instrument Research
Testbed (GT-EFIRT). GT-EFIRT was devel-
oped as an experimental tool for examining
pilot interactions with complex flight deck
automation, and for studying advanced inter-
faces (ref. 95). GT-EFIRT includes the com-
ponents of the Boeing 757/767 flight deck
automation and displays that are important for
aircraft maneuvering and navigation. Based on
the configuration and inputs supplied by the
user, GT-EFIRT’s flight model accurately
describes the resulting real-time behavior of
the aircraft. All the components in GT-EFIRT
were developed with the full capabilities found
on the actual aircraft, with the exception of the
FMS Control and Display Unit (CDU).
GT-EFIRT’s CDU has fully functional display
capabilities, but the input processing required
for the more complex funct: ions was not
developed. Nonetheless, once programmed,
GT-EFIRT’s Fh4S acts as the source of
information used by the LNAV (Lateral
Navigation) and VNAV (Vertical Navigation)
autoflight modes, as in the real aircraft.
Programmed waypoints are tracked in LNAV
mode. Crossing restrictions at waypoints and
speed/altitude restrictions are adhered to in
VNAV under realistic conditions. If, for
example, the information required to use
VNAV mode to accomplish a particular flight
goal is displayed on the appropriate page of
the CDU, VNAV mode can be expected to
perform reaIistically.

.

-

The GT-EFIRT display configuration used in
the GT-CATS evaluation study is shown in
Figure 79. GT-EFIRT runs on a Sun
SparcStation loTM computer with three
monitors. The left monitor contains reproduc-
tions of the primary flight instruments of the
757/767. These are the Attitude Director
Indicator (ADI), altimeter, airspeed/mach
indicator, and vertical speed indicator. The
center monitor has the Mode Control Panel

98

(MCP), Horizontal Situation Indicator (HSI),
HSI range selector, and the FMC CDU. On the
right monitor are additional controls for flaps,
gear, engine thrust settings, etc. Controls for
the simulation are also included on the right
monitor, including controls to select the flight
scenario to be flown, and a window to display
the current ATC clearance.

GT-EFIRT uses a mouse for operator control
inputs. Controls with mouse inputs are located
on the center and right monitors. MCP
windows for setting altitude, airspeed, heading,
and vertical speed have virtual knobs that use
mouse “hot spots” to simulate turning the
knob in a particular direction. Individual
mouse clicks increment the set value; holding
down the mouse button enables a large change
in the set value. This control mechanism may
require the operator to deliberately overshoot
the set value, then correct it with an appropri-
ate number of mouse clicks in the opposite
direction. All other MCP switches operate in a
conventional manner: clicking the mouse
presses the button.
Overall, GT-EFIRT handles the majority of
pilot inputs required to effectively use the
automation found on the 7571767. The fidelity
and realism of GT-EFIRT were exhaustively

I om I

reviewed in the pilot-study phase of the GT-
CATS evaluation. Early tests identified prob-
lems with displays and flight behavior in vari-
ous modes. These problems were then
corrected, and GT-EFIRT was reviewed by
other pilots in the course of later tests. These
subjects assessed the realism of GT-EFIRT as
adequate for exploring mode mangagement
behavior.

Subjects
Ten Boeing 757/767 type-rated line pilots
from a major carrier volunteered to participate
in the study. Each pilot was asked a short
series of questions at the outset of the experi-
mental session. The results of this survey are
tabulated in table 6. Two pilots were captains,
eight were first officers. The mean number of
years of reported experience on the 7571767
was 3.2 years (minimum one year; maximum
five years). All but one had flown the 7571767
recently. All but two had extensive experience
using a mouse as a computer input device
(several owned computers).

99

.Figure 79. GT-EFIRT simulator hardware configuration.

Table 6. Results of initial subject survey.

Subject
Number

1
2

3
4

5
6
7
8
9
1 0

-
Seat

-
2
2

2
1

2
1
2
2
2
2 -

7571767
Experience

(years)
1 .o
1.5

4.0
4.5

3.0
5.0
3.5
3.5
4.0
2.0

Transitioned
From

73 7
737

727
727

MD-88
737
727
727
737

MD-88

Experimental procedure
Each subject “flew” five experimental
scenarios designed to elicit a range of
autoflight system mode usage. Each subject
participated in a single experimental session
lasting approximately four and one half hours,
during which they flew all five scenarios. After
the initial survey, each subject was instructed in
the operation of GT-EFIRT. As part of the
orientation, the experimenter explained the
features of GT-EFIRT and led the subjects
through a real-time training scenario. The
training scenario enabled subject pilots to fly
GT-EFIRT in the same manner as they would
the five experimental scenarios. The experi-
menter answered any questions regarding the
operation of the GT-EFIRT interface, or the
performance characteristics of GT-EFIRT’ s
autoflight modes, during the orientation phase.

Following the orientation, subjects flew each
experimental scenario with GT-CATS tracking
their activities in real-time. Each scenario was
recorded on audiohide0 tape; pilots were
asked to verbalize their activities to the extent
necessary to indicate why they performed a
particular activity in cases where it was not
obvious. After the subjects completed the five

Time Since
Flown Type

(days)
2

500

7
0

1
1
2

4 5
3
3

Computer
mouse

experience
some

Yes

limited

Yes

Yes
Yes
Yes
Yes
Yes
yes

Notes

now L lOl l
FIE

had just
come from
flying

scenarios, a post-questionnaire was adminis-
tered to assess the perceived realism of the
scenarios and GT-EFIRT performance.

Experimental scenarios
The GT-CATS evaluation required a set of
experimental scenarios. The scenarios are
designed to elicit a range of mode usage, in
order to provide insight into the ways in which
pilots use the available automation to navigate
the aircraft. Each scenario is defined by a pre-
flight plan that is preprogrammed into GT-
EFIRT’s FMS before the flight, and a set of
ATC clearances to be issued during the course
of flight. Each scenario begins with a clear-
ance issued while on the ground, proceeds
through takeoff, climb, cruise, and descent,
and ends when the final approach clearance is
issued. Each clearance in a scenario is trig-
gered, in order, as the aircraft reaches a
particular point in the flight.

The clearances are designed to require the
subject pilots to make full use of the available
automation. ATC clearances are worded in a
standard manner that clearly identifies the
flight path required for compliance. Both ver-
tical and lateral clearances utilize a common
set of verbs, modifiers, and state variable values

100

.

to represent the required flight path (ref. 96).
Simple clearances specify modification to a
single aspect of the flight path, while complex
clearances may dictate changes in several
aspects of the flight path. The clearances used
in the experimental scenarios combine a subset
of the clearances identified by Wagner and
Curry. Clearances that require CDU manipula-
tions for compliance are not used. To ensure
that the clearances used in the scenarios reflect
real-world ATC interventions, the scenarios
were exhaustively reviewed by pilots from a
major carrier, and by the pilots who partici-
pated in the GT-CATS pilot study.

The selection of the origin and destination
airports for each scenario, and the flight path
prescribed by the clearances, was driven by
several factors. One factor concerned a
requirement of the GT-EFIRT simulator to
have terrain maps of the origin and destination
airports, in order to provide realistic radio
altimeter readings on the ADI, and to support
interface studies (ref. 96). Airports with
worthy terrain representations were therefore
used to construct the scenarios used in the GT-
CATS evaluation. A second factor that
impacted the choice of origin and destination
airports was the length of the scenarios. It was
necessary to create scenarios that could all be
flown in a reasonable amount of time.
Although the scenarios are designed to “fast-
forward” through the period of inactivity in
the middle of the cruise phase of flight, a short
flight has a lower cruise altitude than a long
flight, which in turn yields shorter climb and
descent phases. A third factor that affected the
choice of scenarios was the importance of
including crossing restrictions, in order to
elicit a range of mode manipulations. Crossing
restrictions are commonly found in published
Standard Instrument Departures (SIDs) and
Standard Arrival Routes (STARs). The GT-
CATS scenarios therefore incorporate SIDs
and STARs commonly used for the selected

airports. Actual traffic conditions were
exaggerated in light traffic areas (such as
Birmingham), in order to create a need for
ATC interventions.

The following subsections describe the five
scenarios developed for evaluating GT-CATS.
Each scenario is tabulated to show the condi-
tions that trigger a particular clearance, the
clearance itself, and the expected mode(s) the
pilot will employ to comply with clearance.
Expected modes are based on the conditions
for expecting a given mode selection in the
OFM-ACM, except in cases noted with an
asterisk. Where an asterisk appears, the OFM-
ACM is conditioned such that a higher level of
automation is expected (e.g., FL CH* indicates
that VNAV mode is expected according to the
OFM-ACM because the programmed vertical
profile is appropriate for complying with the
clearance, but there is a strong likelihood of
pilots using FL CH due to the low altitude and
expected future clearances; FL CH alone indi-
cates that FL CH is the expected mode). Thus,
an asterisk indicates cases where GT-CATS is
likely to apply the revision process. Each
scenario is also depicted graphically to show
the flight path prescribed by the scenario
clearances.

Scenario I: KATGKBHM
Scenario 1 is a flight from Atlanta (KATL) to
Birmingham (KBHM). It is tabulated in table 7
and depicted graphically in figure 80. In this
scenario pilots GT-CATS expects pilots to use
high-level automation (Le., LNAVNNAV
modes) until the final stages of descent. Dur-
ing climb, however, it is likely that pilots will
choose a lower level of automation that GT-
CATS must use the revision process to explain.
The sixth clearance in the scenario is designed
to elicit use of the VNAV speed intervention
submode.

101

8
slow to 240 knots 0 lor traffic spacing

0 resume ncfmal

climb to 1Ww feet-.
maintain runway heading

0 @ speed
expedite descent to

turn ripht @
heading 215

and proceed on course
dexend to 3500 feet-
'low Io 0 knots turn left headtnp 0 235.- slow lo -

200 knots

0

Figure 80. Scenario 1: KATL-KBHM.

Table 7. Scenario 1: KATL-KBHM.
,

- slow to 230 knots crossing

descend to 3500 feet-- slow to

102

in that the descent is interrupted by clearance
Scenario 2: KA TL-KBHMl
Scenario 2 is also a flight from Atlanta
(KATL) to Birmingham (KBHM). It is tabu-
lated in table 8 and depicted graphically in
figure 81. Scenario 2 prescribes a different
route, but differs from scenario 1 principally

to “stop descent for crossing traffic,” and the
aircraft must leave the LNAV route as dictated
by clearance 6. Again the climb phase presents
several situations where GT-CATS may apply
the revision process, if pilots choose against
VNAV mode.

0
climb to CNISB attihide

245 and proceed on course

(3
fast lorwarding to
15 miles belore top ’ FLtW- turn len heading
of dexent 0 \ on *ne

turn len heading
290 and proceed

turn en headtng 290 @

0
turn len heading 235.-
descend to 4000 feet-
slow to 210 kmts

ng 310

I

0
climb to 5000 leet--
msnlin N I W ~ heabng

QJ
turn right heading

knots
slow to 250 knom
crosslng too00 feet

3 325.- slow to 180

turn right head1

I lor tranic spac....
A

descend to 3 ~ 0 @ leet- slow M 200

stop W e n t at
5000 feet for
crossing tratlic

knots

0

Figure 8 1. Scenario 2: KATL-KBHM 1.

103

Table 8. Scenario 2: KATL-KBHM1.
~

Trigger
on ground

altitude above 2200 feet
altitude above 3550 feet
altitude above 4050 feet and
heading past 344
heading past 292

-~ ~

Clearance
1 , climb to 5000 feet-- maintain

runway heading
2. turn left heading 005
3. turn left heading 345
4. turn left heading 290-- climb

to 10000 feet
5. climb to cruise altitude

FLl80-- turn left heading 245
and proceed on course
turn right heading 3 I O for
traffic spacing
turn left heading 250 and
proceed on course
fast forwarding to 15 miles
before top of descent
descend to 8000 feet-- slow to
250 knots crossing 10000

6 .

7.

8 .

9.

Expected Mode Usage
TO, HDG HOLD, TO

FL CH*, HDG SEL, SPD
FL CH*, HDG SEL, SPD
FL CH*, HDG SEL, SPD

VNAV SPD, HDG SEL, SPD

~~

altitude above 12000 feet

heading past 309

top of climb passed and on LNAV
track
less than 7000 feet to top of
descent

1"-
HDG SEL, VNAV SPD

HDG SEL, VNAV SPD

LNAV, VNAV PTH

LNAV, VNAV PTH

feet
10. turn left heading 235-- to altitude below 9700 feet HDG SEL, FL CH, SPD

4000 feet-- slow to 2 10 knots
11. stop descent at 5000 feet for altitude below 7700 feet HDG SEL, FL CH, SPD

dirnb to low0 1-1.- turn nohl w

crossing traffic
12. descend to 3000 feet- slow to

200 knots
13. turn right heading 325-- slow

to 180 knots
14. cleared for approach to

Figure 82. Scenario 3: KCLT-KATL.

altitude below 5100 feet HDG SEL, FL CH, SPD

altitude below 4200 feet HDG SEL, FL CH, SPD

altitude below 3010 feet NA

104

Table 9. Scenario 3: KCLT-KATL.

Clearance
1. climb and 4000 feet-- maintain

runway heading
2. turn right heading 215
3. climb to 6000 feet

4 . climb to 10000 feet-- turn
right heading 290 and
proceed on course

FL260
turn left heading 235 for traffic
spacing
turn right heading 265 and
proceed on course
fast forwarding to 10 miles
before top of descent
cleared for the MACEY 1
arrival-- cross WOMAC at
250 knots and 13000 feet

5. cleared to cruise altitude

6.

7.

8.

9.

10. descend to 10000 feet
1 1. expedite descent to 4000 feet-

- slow to 200 knots reaching
4000 feet

12. turn right heading 275-- slow
to 180 knots

13. cleared for the approach to
runway 26L

~~~ 

Trigger 
on ground 

altitude above 2350 feet 
altitude above 3595 feet and speed 
above 175 knots 
speed above 210 knots 

altitude above 9250 feet 

~~ ~ 

altitude above 17500 feet 

~~~ ~ 

altitude above 20050 feet

~~

altitude above 25995 and past
SPA
less than 7000 feet to top of
descent

~~

altitude below 13500 feet
altitude below 10500 feet

altitude below 4200 feet

altitude below 4050 feet

Scenario 3: KCLT-KA TL
Scenario 3 is a flight from Charlotte (KCLT)
to Atlanta (KATL). It is tabulated in table 9
and depicted graphically in figure 82. The
primary distinguishing features of this
scenario are the unusually low 4000 feet
clearance on takeoff, and the inclusion of a
standard arrival route (STAR), as required by
clearance 9. Pilots are expected to use VNAV
to comply with this clearance, as the crossing
restriction is programmed in the FMS. The
clearance to expedite the descent, then slow
(clearance 1 1), is somewhat unusual, albeit not
unheard of.

Expected Mode Usage
TO, HDG HOLD, TO

FL CH*, HDG SEL, SPD
FL CH*, HDG SEL, SPD

FL CH*, HDG SEL, SPD

LNAV, VNAV SPD, SPD

HDG SEL, VNAV SPD, SPD

HDG SEL, VNAV SPD, SPD

LNAV, VNAV PTH

LNAV, VNAV PTH

FL CH, LNAV, SPD
FL CH, HDG SEL, SPD

FL CH, HDG SEL, SPD

N A

Scenario 4: KCLT-KATLI
Scenario 4 is also a flight from Charlotte
(KCLT) to Atlanta (KATL). It is tabulated in
table 10 and depicted graphically in figure 83.
Scenario 4 includes a crossing restriction that
must be adhered to at waypoint GAFFE during
the climb phase which, like scenario 3, begins
with a clearance to 4000 feet. GT-CATS
expects pilots to use VNAV to meet the cross-
ing restriction because the restriction is pro-
grammed in the FMS. Scenario 4 also includes
the MACEY 1 STAR, and a series of short
descents with speed adjustments. '

105

Table 10. Scenario 4: KCLT-KATL1.

Clearance
1. climb and 4000 feet-- maintain

runway heading
2. turn right heading 215
3. turn right heading 280 and

proceed on course- cross
GAFFE at 240 knots and
8000 feet

4. cleared to cruise altitude
FL260-- resume normal speed
turn left heading 235 for traffic
spacing
turn right heading 255 and
proceed on course
fast forwarding to 10 miles
before top of descent
cleared for the MACEY 1
arrival-- cross WOMAC at
13000 feet and 250 knots
descend to 6000 feet-- slow to
220 knots reaching 6000 feet

descend to 4000 feet-- slow to
200 knots

1 1. cleared for approach to
runway 26L

5.

6.

7.

8.

9.

10. turn left heading 235-

Trigger
on ground

altitude above 2350 feet
altitude above 3595 feet and speed
above 175 knots

past GAFFE

altitude above 8750 feet

altitude above 10000 feet

altitude above 25995 and top of
climb passed and on LNAV track
less than 7000 feet to top of
descent

altitude below 13500

speed below 221 knots

~~

altitude below 4010 feet

TO, HDG HOLD

HDG SEL, VNAV SPD, SPD

~~ ~

LNAVrVNAV SPD, SPD

HDG SEL, VNAV SPD, SPD

HDG SEL, VNAV SPD, SPD

LNAV, VNAV PTH

LNAV, VNAV PTH

~~

LNAV, FL CH, SPD

HDG SEL, FL CH, SPD I
N A

0 climb lo 4000 1801-
cleared to CNW maintain runwav headno

,en altltude FL280-

lasl forwarding 10 10 miles
before top of descent

and proceed WI CWEe

lurn righl WadInp 280 and proceed

knots and B O W feel
@m course-. cross GAFFE a1 240

descend to 4000 feet-. \ slow to 2W knots

cleared lor lhe @
ILS approach Io
runway 26L

0
Figure 83. Scenario 4: KCLT-KATL1

106

Figure 84. Scenario 5 : KLAX-KSFO.

NASA Ames ACFS flight simulator. It does so
to the extent that the mode manipulations
required to comply with the ATC clearances
used can be successfully executed on GT-
EFIRT.

Scenario 5: KLAX-KSFO
Scenario 5 is a flight from Los Angeles
(KLAX) to San Francisco (KSFO). It is tabu-
lated in table 11 and depicted graphically in
figure 84. This scenario was constructed spe-
cifically to mimic a scenario studied in the

107

Table 1 1. Scenario 5 : KLAX-KSFO.

d to 6000 feet- slow to

108

Table 12. Scenario 6: KBHM-KATL.

Clearance
1. climb to 5000 feet--maintain

runway heading-- do not
exceed 160 knots

2. turn left heading 010
3.
4.

increase speed to 180 knots
climb to 7000 feet-- resume

Trigger Expected Mode Usage

on ground TO, HDG HOLD, TO

altitude above 1500 feet
heading past 012
speed above 178 knots

FL CH*, HDG SEL, SPD
FL CH*, HDG SEL, SPD
FL CH*, HDG SEL, SPD

5. turn right heading 060 altitude above 5500 feet FL CH*, HDG SEL, SPD
6. climb to 10000 feet--turn altitude above 6500 feet FL CH*, HDG SEL, SPD

right heading 090 and
proceed on course

r

7. cleared to cruise altitude altitude above 9200 feet LNAV, VNAV SPD, SPD

FL CH, HDG SEL, SPD

I I I for the ILS approach to

several speed adjustments, scenario 6 affords
pilots the opportunity to “get a feel” for GT-
EFIRT’s response to such inputs. Climb rates
in various modes, acceleratioddeceleration
rates, and capture profiles for GT-EFIRT are
all readily ascertainable during this scenario.

Scenario 6: KBHM-KA TL
Scenario 6 is the orientation scenario that each
pilot flies prior to the five experimental
scenarios. This scenario includes multiple
clearances designed to demonstrate GT-
EFIRT’s flight characteristics. By eliciting a
range of mode selections, and requiring

109

GT-CATS ATC facility
Because the experimental scenarios depend on
the successful execution of each clearance in
order to arrive at the condition required to
trigger the next, an ATC facility was devel-
oped. The ATC facility acts as a stop-gap
measure to ensure that pilot errors or timing of
mode selections do not stymie data collection
during a scenario. In the event that a pilot errs
in complying with a scenario clearance, or
times compliance such that a triggering event
is missed, the ATC facility is used to issue a
clearance that redirects the pilot into a position
such that downpath clearances are triggered
normally .

Any actions performed to comply with a
clearance issued through the ATC facility are
still interpreted by GT-CATS, because the
LOE update necessary for GT-CATS to under-
stand the actions is still performed. This is

seconds), time-stamped ATC clearance data,
and time-stamped operator actions. Examples
of GT-EFIRT output data are shown in figure
86. The first data line in figure 86 shows how
ATC clearances are logged. The second data
line shows a state-space-data update. The third
line shows how pilot actions are logged.

A GT-CATS output file contains time-stamped
data for each determination GT-CATS makes.
Examples 8f GT-CATS output file data are
annotated in figures 87 and 88. These data
show when each expectation was generated,
when each action was interpreted, and the
results. These data also include the current
state of DUO (i.e., all the activities that are
active) at the time when GT-CATS interprets
an action. The fifteen types of pilot actions
that GT-CATS interprets are shown in table
13.

~

h
done by allowing the experimenter to input, 40477 1114.62 atc-oomMd ?RAP-=

t --
ATC

first, the required LOE modifications, and sec-
ond, the text of the clearance.

time sump

4
1114.62 atc-m- TRAF-SFCG + z c'*srana clsarance idantiller

aircnft sUta dmta

/
codes for

time sump *rmedl.ncw*d modes
upd.1.

+ + A
240 1114.70 5 3 7 0 3 1 1.15 -0.00 290.45 12137.93 9882.89
292.66 0.00 3300.54 33.56 -84.48 290.00 300.27 18000 10000.
0 0 0 4000 18000.00 314.00 1299.00 78453.83 0 0 4 5 0
e FMS-raisted data

40488 1114.80 6096 prsh-sp3-se-sw 6082 5090 5089 6084 5092 4056
4055 3020 6095 5109 5107 5106 5104 5110 4062 4061 3022 2011 2010
1003 1 S 2 ' p r s h - & - s e l - S W (6096) detect.& -1- to

t init-&- ' tenrtn and Vnav-spd-clinw

n t . n k n n d w r u l o n m
oa)

t
I . " P L l d C l a
L w n d - p w

current sIr.p..d when Figure 87. Example GT-CATS output data. 1114.80 W-bLm 293. m767 C- speed intervention initiate

time sump

sclion identifier (corrssponda
l o push-apd-sol-aw)

Figure 86. Example GT-EFIRT output data.

Data collection
Data are collected in files output by both GT-
EFIRT and GT-CATS. The GT-EFIRT output
files include state space data (output every five

110

lm- rum3 I. "*, U.1 DI lI*nUt*.um ""*I. *I

(I It I. ""..CCt.d) the d 4 n . d . c U o l In lh.
~d.nui*d -Im .I .xprtmu.n n(on. rltn m. .- IU- .. 1 71 OFWACU w b g h a u

41141 1125.68 l.WW 16337) 6332 5398 5397 4202 3063 6336
5403 4205 6362 5438 5437 6363 6364 5440 5439 4220 4219
3065 2026 2025 1006 3 S 3 'plsh-fl-&-sw (6337) detgted'

?. un.-
..Aon d.l.CI.d

~dnnnc.u.n " Y ~ M .I m.
kl.i.wc. o(m. run in th .
OFY-ACY m.1 .yl.in. IH
d.U.21.d .5110"

4
41162 1126.03 6337 p s t - f l - d - s w 6332 5398 5397 4202 3063
4205 6362 5438 5437 6363 5439 4220 4219 3065 2026 2025
1006 3 S 5 'p&-fl-d-sw 16337) revised prmarym?thzd

s e b p e g - f l - d fl-ch¢'

5 . .o*.n ..pkh.d "la
m. n r i d o n pnr.. ~dnin*.tlon IIY- 01 m. .sum

-"Id no1 P d Y s . ." ..pl.n.11.o
/fer whkh the mlda

40907 1121.78 6337 p s t - f l - d - s w 6332 5398 5397 4202 3063
6344 54U 4208 3066 2026 2025 1006 3 S 6 'p&-fl-d-sw
(6337) e' t '

s
VI. the mision -. rmm -n MI b ..w.d

Figure 88. More example GT-CATS output
data.

Table 13. Detectable actions in GT-CATS.

1 . push-tsp-sw (push thrust select panel switch)

2. push-ap-cmd-mode-sw (push Autopilot Command
mode switch)

3. push-ah-hold-sw (push Altitude Hold switch)

4. push-hdg-sel-sw (push Heading Select switch)

5. dial-mcp-hdg (dial MCP heading)

I 6. push-hdg-hold-sw (push Heading Hold switch) I

9. dial-mcp-vs (dial MCP vertical speed)

r l0 . vush-mcv-spd-sw (vush MCP Speed switch) I
1 1 . push-fl-ch-sw (push Flight Level Change switch)

12. push-vnav-sw (push Vertical Navigation switch)

13. dial-mcp-ias (dial MCP indicated airspeed)

14. push-spd-sel-sw (push Speed select switch)

15. dial-mcv-alt (dial MCP altitude) I

Experimental configuration
Figure 89 depicts the experimental configura-
tion used in the evaluation. The experimenter
acted as Air Traffic Control, and monitored
the operation of GT-CATS and GT-EFIRT.
The subject pilot's activities were audio and
video recorded. Data were recorded via com-
puter; GT-EFIRT simulator data were recorded
on one SparcStation and GT-CATS output
datat.were recssded on the other. As noted
above, GT-EFIRT data include the values of
the relevant simulator state data recorded and
time-stamped every five seconds, along with
time-stamped ATC clearances. GT-CATS out-
put data were the hypothesized operator
actions, detected actions, and explanations for
actions, all time-stamped with the time they
were issued. GT-CATS data also included the
time-stamped ATC clearances and entries
made by the experimenter indicating whether
or not explanations produced by GT-CATS
were correct, insofar as they accurately
described the mode that a given pilot action
supported.

111

GT-EFIRT Simulator
(SparcStation 10)

GT-CATS & ATC
(SparcStation 10)

mics

Experimenter

Figure 89. Experimental setup for the GT-CATS evaluation.

Performance measures
The GT-CATS evaluation method seeks to
determine the extent to which GT-CATS
adequately “tracks” operator actions. Several
measures are important for assessing the
effectiveness of GT-CATS for understanding
the activities of pilots navigating glass cockpit
aircraft. Generally, these measures reflect GT-
CATS’ capability to expect pilot actions, and
its capability to explain detected pilot actions.
The GT-CATS activity tracking process gives
rise to two sets of possible outcomes from
which the measures are derived. One set of
outcomes results when an action is expected.
Another set of outcomes, related to the first,
results when an actual operator action is
detected.

Two sets of outcomes that define the measures
used in the GT-CATS evaluation are shown in
figure 90. The top of figure 90 depicts the
outcomes that are possible when an action is
expected. When the action becomes active in
DUO, it is expected. It can then be flagged as
late (possibly missed) or not. An action deter-
mined to be late can later be detected (if the
pilot was indeed slow in performing it), in
which case GT-CATS either explains it cor-
rectly (letter “A” in figure go), or explains it
incorrectly (letter “B” in figure 90). It can
also go undetected if the pilot never performs
it, or the situation changes such that it is no
longer expected (letter “(2”). Actions that are
not flagged late can also go undetected if the
situation changes such that they are no longer
expected (letter “F”); if they are detected,
they may be either explained correctly (letter
“D”) or explained incorrectly (letter “E’).

*

.

112

Correctly
Explained

Incorrectly
Explained

Detected < Undetected 8
Flagged Late

/
Correctly
Explained

Incorrectly
EXpiainecE

Expected Actions

Detected

Not Flagged Late u I

\Undetected @

@=@+a Correctly
/Explained

/..pected\~ncorrect~y Explained = + 8

\ Detected Actions

Unknown
Correctly Explained 0

nexpected

lncovwtlY Explained 6
\Unexplainable 0

MisunderstoodActions= @ + 0 + 6 + 0
Unfulfilled Expectations = 0 + 0

Figure 90. Possible outcomes from the GT-CATS activity tracking process.

The middle portion of figure 90 depicts the set
of outcomes possible for a detected action. A
detected action may be either expected or
unexpected. When an expected action is
detected, it may be either correctly explained
(letter “G”), or incorrectly explained (letter
‘“1’). As indicated in figure 90, this branch
of outcomes essentially ignores whether the
action was flagged late or not prior to being
detected, so that “G’ is the sum of “A” and
“D,” and “H” is the sum of “B” and “E’.
The definition of a correct explanation is one
in which GT-CATS explains the action to sup-
port the task and valid mode selection that the
pilot actually selects. Any other explanation is

incorrect. In other words, only when GT-
CATS explains an action to support a valid
mode selection, and only when the valid mode
selection is the one that the pilot actually
chooses, does GT-CATS correctly explain the
action. As an example of an expected action
that is incorrectly explained, consider a situa-
tion where the pilot is expected to set the MCP
altitude to setuplengage VNAV, and the pilot
indeed sets the altitude, so that the action is
explained to support the expectation. But, then
the pilot chooses FL CH mode instead. The
fact that FL CH mode was chosen instead of
VNAV invalidates the explanation that the
altitude was set in support of VNAV mode.

113

As noted above, figure 90 shows how the out-
comes possible when GT-CATS generates an
expectation are related to the outcomes possi-
ble when an action is detected. When an action
is detected, it is either correctly explained or
incorrectly explained, regardless of whether
GT-CATS flagged it late prior to detecting it.
Thus, the sum of correctly explained actions
flagged late, and those not flagged late is the
number of correctly explained detected
act ions.

Figure 90 also provides insight into what it
means when an action is misunderstood by
GT-CATS. As shown at the bottom of figure
90, misunderstood actions are those that are
incorrectly explained, unknown with reference
to the current subphase of the OFM-ACM
active in DUO, incorrectly explained through
the revision process, or unexplainable through
the revision process (“H’ + “I” + “K” +
“L”). Note that actions that are not explain-
able via the revision process (“L”) may in

114

This definition is unambiguous, because the
mode that is engaged in the controlled system
is inspectable; a difference in the mode selec-
tion used as part of the explanation as com-
pared to the valid mode engaged in the aircraft
indicates that the explanation is incorrect.

The middle portion of figure 90 also shows
the set of outcomes that can arise when GT-
CATS does not expect a detected pilot action.
If an action was not expected, then GT-CATS
either cannot find an instance of it in the cur-
rently active subphase, in which case the action
is unknown (letter “I” in figure 90), or GT-
CATS subjects the action to the revision proc-
ess. Upon application of the revision process,
the action may either be correctly explained
(letter “J”), incorrectly explained (letter
“K”), or the revision process may fail to gen-
erate an explanation for the action (letter
“L”). Again, the explanation attained through
the revision process is correct only if the
action supports a mode selection that is
engaged or becomes engaged as a result of the
action.

fact be operator errors, so GT-CATS is in fact
correct in not understanding them. Additional
analysis of such actions is discussed in detail in
the next chapter. Actions that GT-CATS
expects but never detects, whether flagged as
late or not, are unfulfilled expectations (“C”
+ “F”). To find out whether such expecta-
tions went unfulfilled as a result of errors of
omission, additional analysis (also discussed in
the next chapter) is needed.

Collectively, these outcomes serve to define a
set of measures for assessing GT-CATS’ activ-
ity tracking capabilities. By examining data to
determine how it breaks down into these cate-
gories, the overall effectiveness of GT-CATS
can be quantified. In addition to the quantita-
tive measures, subjective indications of the
realism, reasonableness, and representativeness
of the GT-EFIRT simulator and the experi-
mental scenarios were also collected via a post-
questionnaire, as described in the next chapter.
These data are important for establishing that
GT-CATS activity tracking process was evalu-
ated in a realistic supervisory control environ-
ment. Overall, the GT-CATS evaluation sought
to show that a majority of pilot actions were
understood, and that, although expectations
are correct a majority of the time, the GT-
CATS revision process makes an important
contribution to explaining pilot actions.

.

Summary
The GT-CATS evaluation sought to assess how
well GT-CATS expects and explains pilot
actions. Ten type-rated pilots from a major
carrier each flew five experimental scenarios.
Data from the GT-EFIRT simulator and GT-
CATS were collected via computer, and the
experimental sessions were audio- and video-
taped. In addition to demonstrating GT-
CATS’ effectiveness in tracking pilot activities,
the evaluation was expected to show the
effectiveness of the revision process in
explaining unexpected pilot actions.

.

7. Results

Introduction
Effective activity tracking entails successful
prediction and explanation of operator activi-
ties in real time. The results of the GT-CATS
empirical evaluation presented in this chapter
describe in detail GT-CATS’ activity tracking
performance. The evaluation is based on the
data and assessments defined in figure 90. GT-
CATS “understands” an action when it
explains it to support a task that, in turn,
supports a pilot’s mode selection. GT-CATS
either explains actions using prior expecta-
tions, or through the revision process.

On the other hand, GT-CATS “misunder-
stands” actions in four ways. First, the revision
process may fail to explain the action (this is
the desired outcome if the action is in error).
Second, GT-CATS may be unable to locate the
action in the currently active subphase of the
OFM-ACM. Third, an expectation may lead to
an incorrect explanation, and, fourth, the revi-
sion process may explain an action incor-
rectly. GT-CATS explains actions incorrectly
if it incorrectly associates a pilot action with a
task in DUO that does not support the
currently active mode.

This chapter first provides a macro-analysis of
the data. The macro-analysis summarizes GT-
CATS’ predictive and explanatory perform-
ance. The above definitions are then used as
the basis for a “micro-analysis” of the data.
The purpose of the micro-analysis is to cate-
gorize each misunderstanding on the part of
GT-CATS. For example, one facet of the
micro-analysis identifies actions that are in fact
errors. These data are in turn useful in identi-
fying enhancements to GT-CATS that address
specific classes of misunderstandings. This
chapter presents enhancements to the GT-
CATS OFM-ACM and processing scheme to

remediate several classes of misunderstandings
identified in the micro-analysis.
The chapter then describes the results of the
questionnaire given pilots to assess the realism,
reasonableness, and representiveness of the
evaluation scenarios and the GT-EFIRT simu-
lator. Finally, the chapter discusses differences
in the number and types of actions pilots per-
formed across scenarios. The overall results
presented here are tabulated in Appendix B;
data on detected pilot actions are graphed in
Appendix C.

Overall results
Figure 91 shows the overall results of the GT-
CATS empirical evaluation. The results
indicate that, with minor adjustments, GT-
CATS can correctly explain 94% of the 2,089
pilot actions observed in the study. GT- CATS
expected and correctly explained 5 1 % of pilot
actions. It successfully applied the revision
process to explain an additional 28% of pilot
actions. Pilot ‘errors’ accounted for 2% of
unexplained actions, minor adjustments would
enable GT-CATS to explain I3%, and further
research is necessary to explain 6%.

Unexwcted

Expected and
Correctly
Explalned

51X

Pilot ‘Errors‘

Further Adjustments

Needed
6%

Research 13%

Figure 9 1. Overall results of the GT-CATS
empirical evaluation.

115

Predictive capabilities of GT-CATS
Although GT-CATS expected more than half
of pilot actions, the revision process was
nonetheless instrumental in explaining 28% of
pilot actions. Figure 92 shows the predictive
performance of GT-CATS. Specifically, it
shows the numbers of actions that GT-CATS
expected and did not expect, and the number
of expectations for pilot actions that pilots did
not subsequently perform. The results indicate
that GT-CATS expects more actions than not,
and generates far fewer expectations that are
not fulfilled.

1200
1107

1000 . c - z 800

P 5
C

d 600

L

400 c
200

0

982 I 317

Unfulfilled expectations are the result of either
the situation changing, such that current
expectations are by replaced by new ones, or
pilots choosing a different mode than
expected, such that they performed
unexpected actions rather than meeting
expectations. The results indicate that most of
the time unexpected actions are “extra”
actions that pilots perform when they transi-
tion between modes or adjust target values in
situations where these actions are not required.
Pilots apparently perform such actions seeking
to exploit some perceived advantage of an
alternative mode.
As figure 93 shows, GT-CATS’ revision proc-
ess facilitated correct explanations for a
majority of action types. For two thirds of the
action types, GT-CATS correctly explained at
least 75% of pilot actions.

-

.

Figure 92. Predictive performance of GT-
CATS.

116

.

.

100%

8 0 '10

60%

40%

2 0 %

0 %

Adions
Expected and
Correctly
Explained

Correctly
Explained by
the Revision
Process

Actions

Y

Action Type

Figure 93. Correct explanations for expected and unexpected actions.

Action Type

Figure 94. Pilot 'errors.'

117

Pilot ‘errors’
The overall results show that 2% of actions
were pilot ‘errors.’ In making this determina-
tion, it is a prerequisite to define what consti-
tutes an error. First, the errors identified
through micro-analysis are those actions that
are either incorrect because they represent a
procedural step performed out of order or an
attempt to engage an invalid mode, or because
the aircraft already transitioned to a new mode
configuration in which the action was unneces-
sary. Thus, the errors included here are errors
of commission. (Only one error of omission
was recorded in the study: a failure to engage
HDG HOLD before takeoff.) Furthermore,
GT-CATS correctly explained ‘errors’ that
involved setting target values on the MCP to
have been set with the wrong value. Because
these actions were, in fact, explained, they are
not included here.

Figure 94 shows those actions identified as
pilot ‘errors,’ although none can be consid-
ered threatening to flight safety. The greatest
number of errors involved the push-vnav-sw
action; the vast majority resulted from pilots
attempting to engage VNAV as part of a pro-
cedure following autopilot CMD engagement,
when in fact the aircraft had already transi-
tioned to capture the cleared altitude. Some
pilots did not notice the mode transition to
ALT CAP, and attempted to engage VNAV
anyway. Another prevalent error involved
attempting to engage VNAV or FL CH without
first setting a new altitude on the MCP. Other
errors were actions inappropriate for the
engaged mode, or pressing the wrong mode
engagement switch.

Enhancements/adjustments to GT-CATS
Minor adjustments identified by the micro-
analysis of outcomes would enable GT-CATS
to explain all but 6% of pilot actions. Figure
95 shows the additional percentages of each
action type explainable with adjustments.

Access to the next subphase
The first adjustment would enable GT-CATS
to explain actions that are represented in

subphases of the OFM-ACM other than the
currently active subphase. If a pilot performs
an action slightly before GT-CATS switches to
the subphase in which the action is repre-
sented, GT-CATS cannot locate a corre-
sponding action in DUO. Thus, as imple-
mented, GT-CATS cannot explain the action.
In the evaluation, pilots sometimes started con-
figuring the autoflight system and adjusting
target values before 1,OOO feet AGL;these
actions are not represented until the climb-to-
3000-ft subphase (which becomes active at
1,000 feet AGL). This processing error can be
corrected by allowing GT-CATS’ action
manager access to the subphase immediately
following the current subphase.

-

OFM-ACM enhancements to explain heading
adjustments
A second adjustment involves minor additions
to the OFM-ACM to correct a model error.
The additions enable GT-CATS to explain
MCP heading adjustments pilots make during
LNAV use, which are devoted to lining up the
magenta line on the HSI that shows the MCP-
selected heading with the LNAV route.
Keeping the heading aligned with the LNAV
route helps pilots monitor LNAV operation.
These actions constitute a significant fraction
(approximately 36%) of actions that GT-
CATS did not explain; because no dial-mcp-
hdg actions are modeled to support LNAV
mode usage, GT-CATS revision process fails
to explain these actions.
Figures 96 and 97 show two modifications to
the OFM-ACM proposed to enable GT-CATS
to explain MCP heading adjustments made
during LNAV operation. Figure 96 shows the
addition of a dial-mcp-hdg action to support
monitoring LNAV turns; figure 97 shows the
addition of a dial-mcp-hdg action to support
monitoring the programmed LNAV route.
Although unverified, these adjustments to the
model structure would most likely enable GT-
CATS to associate heading adjustments with
instances of actions in DUO during LNAV
operation.

’

118

a
E
0

0
U

0

Q
(I)

E
Q

-
L)

r

m
c)

f n

100%

80%

60%

40%

20%

0 %

c

~

Explainable with
Minor

Explained by the
Revision Process

Action Type

Figure 95. Additional actions explainable with minor adjustments to GT-CATS.

setup-lat-Profile
ene- lnav -push-lnav-sw Asetup-enc-lnav

yrnon-lnav-turn

I

mon-lnav-turn-crs Hdial-mhdcr
mon-lnav-ened Hrnon-lnav-adi-annc I

Figure 96. Addition of dial-mcp-hdg action to support the mon-lnav-turn-crs subtask.

setup-lat-profile I
enc- lnav Hpush-lnav-sw

setup-ena-lnav

mon-lnav-crs - v a l - I r c p - h d g
mon-lnav-hold mon-lnav-encd Hmon-lnav-adi-annc

Figure 97. Addition of dial-mcp-hdg action to support the mon-lnav-crs subtask.

119

p u p vert prolllj dial-mcp-alt incorrectly
+-explained as supporting

setup-eng-vnav

dial-mcp-alt actually
performed in support of

evidenced by subsequent
unexpected FL CH switch
press

4-setup-eng-f I-ch, as

Figure 98. Example of incorrect explanation of dial-mcp-alt action.

OFM-ACM adjustments to explain altitude
settings
Another model error that can be corrected
with a minor modification to the OFM-ACM
would enable GT-CATS to explain nearly all
of the dial-mcp-alt actions detected in the
study (see figure 95). These actions constitute
15% of actions GT-CATS does not correctly
explain as implemented (either following an
expectation, or by the revision process).
Altitude settings are presently modeled as part
of the “setup/engage” task for each vertical
mode that pilots can manually engage. Figure
98 shows how an altitude adjustment expected
in support of VNAV is incorrectly explained
to support VNAV when, in fact, the pilot per-
formed the action in preparation to use FL

CH. Because pilots set the MCP altitude when-
ever a new cleared altitude is issued by ATC,
altitude settings may be better modeled as a
task separate from the engagement of a par-
ticular mode. Figure 99 shows the proposed
modification to the OFM-ACM; grey nodes
indicate how altitude settings are modeled in
GT-CATS’ present implementation. The
modified OFM-ACM structure, however,
removes the ambiguity that leads to incorrect
explanations for dial-mcp-alt actions. A simi-
lar modification may also enable GT-CATS to
better understand speed adjustments; however,
speed adjustments are more tightly linked to
the use of a particular mode, so such a modifi-
cation may be unsuitable to faithfully model
speed adjustment tasks.

120

d vnav-spdcl im b
push VNAV

switch
engage VNAV

Figure 99. Modeling altitude settings independent of mode.

Other enhancements
The remaining actions that GT-CATS can
explain with small modifications result from
situations similar to those described above.
One pilot who engaged HDG HOLD mode
after using HDG SEL to turn onto the cleared
heading accounted for the misunderstood
push-hdg-hold-sw actions. This usage was not
modeled in GT-CATS’ OFM-ACM-a model
error, although the usage was highly
unorthodox.

GT-CATS revised some actions incorrectly
due to ambiguities similar to those that caused
GT-CATS to explain dial-mcp-alt actions
incorrectly. For example, speed may be
adjusted using the MCP in both ALT CAP and
ALT HOLD modes. Which mode did the
action in fact support? A second group of
incorrect revisions resulted when pilots
attempted to start a descent before the assigned
top-of-descent point-a condition for switch-
ing from cruise phase to the descent phase. In
these cases, GT-CATS incorrectly revised
push-vnav-sw actions to support a change of

cruise altitude (i.e., a step descent), instead of
the actual descent. Again, this processing error
could be corrected by allowing GT-CATS
access to the next phase.

6% of pilot actions recorded in‘the GT-CATS
evaluation were not explained, and require
further research. A variety of additional
enhancements are planned as the subject of
such research. These enhancements are
described in the next chapter.

Results of a post-experimental
questionnaire
After completing the five experimental
scenarios, each subject pilot was asked a series
of thirteen general questions about the reason-
ableness, realism, and representativeness of the
GT-EFIRT simulator and the experimental
scenarios (table 14). The questions called for
responses on a Likert scale, with 1 being “very
bad,” “very different,” or “very infre-
quently,” and 7 being “very good,” “very
similar,” and “very frequently,” depending
on the question; 4 was the median response.

121

Table 14. Post-experimental questionnaire.

1. Rate the training you received.

2. How similar was operating the simulator to the real flying task?

3. Rate the overall reasonableness, realism, and representativeness of the scenarios.

4. Rate the overall reasonableness, realism, and representativeness of the ATC clearances used in
the scenarios.

5. Rate the overall reasonableness, realism, and representativeness of the simulator Automated
Flight Control System (AFS and FMS).

6. Rate the overall reasonableness, realism, and representativeness of the simulator AFS.

7. Rate the overall reasonableness, realism, and representativeness of the simulator FMS, given its
limited functionality.

8. Rate the overall reasonableness, realism, and representativeness of VNAV mode operation.

9. Rate the overall reasonableness, realism, and representativeness of LNAV mode operation.

10. Rate the overall reasonableness, realism, and representativeness of ALT CAP mode operation.

11. Rate the overall speed control performance of the simulator.

12. How easy was it for you to verbalize your intended action?

13. How frequently did you want to use a method not supported by the simulator?

14. General Comments:

The results of the questionnaire indicate that,
on the whole, the GT-EFIRT simulator is rea-
sonable, realistic, and representative. General
comments also indicated that the GT-EFIRT
simulator and experimental scenarios are gen-
erally good. Two results, in particular, deserve
mention. First, pilots gave good ratings to
VNAV mode, as implemented in GT-EFIRT.
This is important because poor VNAV per-
formance might have led pilots to select it less
often than they otherwise would. Second,
pilots indicated that GT-EFIRT supported the
navigation methods they would normally use
to comply with clearances such as those issued
in the study. This is also important because

.

pilots were able to select modes as they would
in the actual aircraft.

The averaged responses for the questionnaire
are shown in Figure 100. High ratings indicate
positive performance for all but question 13,
where a low rating is indicative of positive
performance. Figure 100 shows that the
responses to all questions were, on average,
positive. Thus, 757/767 pilots in both the
formal evaluation and the “pilot” studies that
preceeded it agreed that GT-EFIRT allowed
navigation behavior comparable to that found
in actual aircraft.

-i

122

7

6 -
0
cn
C
0
0.

al
cn5
a

al
0 3 - E
a
al
5

2 -

1
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

Question Number

Figure 100. Average responses to the post-experimental questionnaire (n=lO).

Pilot mode usage differences
The GT-CATS evaluation revealed variations
in the number and type of actions pilots per-
formed. For example, pilots 3, 4, and 7 per-
formed a greater number of actions, and used
a wider variety of modes than did pilots 2, 6,
and 9. As an example of such differences,
figures 101 and 102 depict the explanatory
performance of GT- CATS for pilots 3 and 6,
respectively. Pilot 3 used more modes than did
pilot 6. The results for pilot 3 are representa-
tive of results for other pilots who used a
“browsing” approach to select
modes-selecting one mode, then immediately
selecting another instead.

This behavior apparently reflected the desire
of some pilots to explore the functionality of
the GT-EFIRT simulator in the process of
complying with the scenario clearances; at
times, however, the behavior resulted from an

inappropriate initial mode selection. As with
pilot 3, GT-CATS misunderstood more actions
of pilots who “browsed” among available
modes. For purposes of the evaluation, such
actions were not considered errors; only
actions meeting the error definitions set forth
earlier were investigated as such.

Mode usage differences across
scenarios
Differences in performance across scenarios
were less pronounced. Such differences pri-
marily reflected the length of the LNAV route,
whether clearances called for deviations from
the LNAV route, the number and spacing of
scenario clearances, and the presence or
absence of crossing restrictions. Differences
also arose from supplementary clearances
issued via the GT-CATS ATC facility, in
addition to clearances specified in the design
of each scenario.

123

12 0 r' ... - .. , (12% involved both vertical and lateral profile

10 0 : - -

g 4 0

:
2 0

0 0

i TI
modifications.) Overall, supplementary -ATC
clearances accounted for 18% of the total
number of ATC clearances issued during the
study.

Micro-anal y sis
A micro-analysis of the data from the GT-
CATS evaluation was performed to provide a
fine-grained assessment of GT-CATS
performance.
The micro-analysis entailed rerunning GT- r

CATS with the experimental data and identi-
fying the reasons behind individual activity
tracking outcomes. The micro-analysis catego-
rizes each unfulfilled expectation, incorrect
explanation, unexpected action, incorrect revi-
sion, unexplained action, and unknown action,
to separate those resulting from implementa-
tion-dependent aspects of GT-CATS and GT-

8 0 EFIRT from those deserving further research.
7 0 r&OG E.& m a - For example, the micro-analysis confirmed

that unfulfilled expectations resulted from a
change in the situation, an alternative mode
selection, or a pilot omission-a11 cases in
which normative expectations are not met by
pilot actions. Similarly, the micro-analysis
identified misunderstood actions that were

I I I analysis was instrumental in producing the

a
Acllon Typo

Figure 10 1. Average numbers of actions per-
formed by subject 3 for all scenarios (error
bars indicate one standard deviation).

M M h EV4.d 10. - 9 6 0

t
; s o

i 4 0 z
b 3 0 r
: 2 0

. A . M ArD1 - E.-
V. L r U a IJI

1 0 actually pilot 'errors.' Thus, the micro-
0 0

1 I 1 f 1 ! 5 f @ overall view of the evaluation results presented
8 S 5 a S ' in figure 91. ' '
Aollon Typo

Summary
The GT-CATS empirical evaluation showed
that, overall, GT-CATS predicts and explains
pilot activities effectively. GT-CATS success-
fully predicted and explained over half of the

Figure 102. Average numbers of actions per-
formed by subject 6 for all scenarios (error
bars indicate one standard deviation). ,

2,089 actions detected in the study. Further-
more, the GT-CATS revision process was
instrumental in explaining approximately 36%
of the actions that GT-CATS explained
successfully. This result demonstrates the
importance of the revision process in tracking
the activities of pilots using multiple modes.

Supplementary clearances were added during
some scenarios to make small modifications to
the route, to ensure later clearances were trig-
gered appropriately. Of supplementary clear-
ances, approximately 79% involved modifica-
tions to the lateral profile-primarily modifi-
cations to heading to allow for a better route
intercept heading. Approximately 34%
involved modifications to the vertical profile.

124

.

8. Conclusions and Further
Research
This chapter summarizes the contributions of
GT-CATS research. In addition, it posits
research areas that would enhance or extend
GT-CATS.

Conclusions
GT-CATS extends research on intent infer-
encing in several ways. First, it provides data
on the effectiveness of a methodology for
activity tracking in a complex system. Specifi-
cally, data are presented for airline pilots per-
forming realistic mode management tasks in
the context of realistic flight scenarios.
Second, GT-CATS research proposes a set of
theoretical knowledge and processing condi-
tions which can track operator activities.
Finally, the research suggests how additional
knowledge could be captured and utilized
within the proposed framework.

GT-CATS contributes four theoretical insights.
First, it establishes conditions on the types of
knowledge that must be available in a domain
in order to build a representation to track op-
erator activities. Detailed information on the
state of the controlled system, the state of the
control automation, and internal variables used
by the automation is required. This informa-
tion is represented in GT-CATS’ state space.
Because this knowledge must be available in a
form that supports computation, GT-CATS
requires that the controlled system is an engi-
neered system from which current state infor-
mation is directly obtainable.
Second, knowledge about the goals of the
operator must also be available in a form that
affords comparison of the system state infor-
mation with current goals. GT-CATS repre-
sents knowledge about operator goals in its
limiting operating envelope. Again this knowl-
edge must be available in a form that supports
computation. In the glass cockpit domain, for
example, such information is available via
programmed flight plan information con-
tained in the Flight Management System.

Amendments to the programmed flight plan
required by Air Traffic Control are available
via datalink technology.

A third type of knowledge concerns standard
operating procedures and methods operators
use to meet the systems goals and manage the
operation of the controlled system. This
knowledge is obtained from operator training
curricula and the structure of the control
a u t a m a b . 0the.r engineered domains have
comparable well-defined goals and operating
procedures to fulfill them (e.g., satellite
ground control systems, manufacturing
systems, and air traffic control systems).

Given that these types of knowledge are avail-
able in a domain, GT-CATS research demon-
strates a means of organizing the knowledge to
track operator activities in complex systems.
Specifically, GT-CATS research shows that an
enhanced Operator Function Model-the
OFM-ACM-an effectively represent knowl-
edge about an operator’s mode management
task. At the top of the OFM-ACM hierarchy,
knowledge is decomposed into phases and
subphases of system operation, and the func-
tions required for each subphase. Below the
function level, the OFM-ACM represents
knowledge about how control options pro-
vided by modes allow the operator to perform
various control tasks. These tasks are decom-
posed into subtasks and, in turn, into operator
actions needed to accomplish them.

The third contribution of GT-CATS research
specifies how to use domain knowledge to
support the inferencing required for activity
tracking. ’ Inferencing creates additional
requirements on the organization of knowl-
edge about the operator’s task. In particular,
function-level operator activities represented in
the OFM-ACM must be uniquely determinable
using knowledge in the state space and limit-
ing operating envelope. Thus, by identifying
the functions applicable in the current operat-
ing context, the structure of the OFM-ACM
identifies viable control options (modes).

125

Another contribution is the use of context
specifiers. Context specifiers serve as a mecha-
nism for transforming knowledge about the
state of the controlled system and control
automation, along with knowledge about cur-
rent operator goals as encapsulated in the lim-
iting operating envelope, into activation con-
ditions for nodes in the OFM-ACM. These
conditions determine when a particular
operator activity is expected.

Context specifiers provide an alternative to
script-based inferencing. By acting as activa-
tion conditions for nodes in the OFM-ACM,
they specify relationships among activities in
the OFM-ACM. For example, an operator
activity represented in the OFM-ACM (e.g.,
engage VNAV) may have as a condition a
context specifier that results from the effect of
a previous activity (e.g., set MCP altitude).
Thus, rather than explicitly specifying the
ordering of actions using a script, context
specifiers provide a mechanism by which
actions are flexibly ordered according to the
current operating context.

GT-CATS research also proposes an
inferencing process. GT-CATS demonstrates
that context-specific knowledge can be used to
predict operator activities. The revision process
allows a prediction to be revised based on
updated information when operator activities
that support alternative methods (modes) for
carrying out the required function are
executed.

Finally, GT-CATS demonstrates a method for
instantiating, processing, and evaluating the
OFM-ACM to predict and interpret operator
actions. By evaluating GT-CATS in the con-
text of the glass cockpit, using type-rated
pilots, this research establishes activity tracking
as a viable approach to interpreting pilot mode
usage activities. The GT-CATS empirical
evaluation quantifies GT-CATS’ activity
tracking capabilities in terms of possible out-
comes. GT-CATS effectively predicts the
mode a pilot will use in the current context,
and explains supporting actions as supporting

it 51% of the time. GT-CATS’ revision proc-
ess interprets an additional 28% of actions as
supporting alternative modes to accomplish
the required control functions. Overall, with
minor enhancements to the OFM-ACM and
GT-CATS’ processing scheme, GT-CATS can
interpret 94% of pilot actions. Thus, the
evaluation establishes the strengths of GT-
CATS, and indicates directions for further
research.

Enhancements and Suggestions for
Further Research
The remainder of this chapter highlights some
additional enhancements to GT-CATS that
appear promising. Chapter I11 described how
Woods et al.’s (ref. 11) characterization of the
factors that impact operators of complex
systems applies to modal systems. To
effectively choose modes, operators weigh
their knowledge of the characteristics of the
modes, attentional resources, and strategic
factors in the current operating context. The
context-specific information GT-CATS uses to
predict mode selections reflects the informa-
tion requirements of the modes (e.g., to use
the VNAV mode, a vertical profile must be
programmed in the Flight Management
System). One area in which in GT-CATS
could be usefully enhanced, therefore, is to
implement additional state variables and
update the state space more frequently.

First, including predictive information in both
the state space and limiting operating envelope
will improve the ability of GT-CATS to more
accurately predict operator activities. For
example, the micro-analysis of the current data
indicates that if GT-CATS’ state space
includes predictive information, GT-CATS
might better understand operator actions that
depend on the capability of the automation to
achieve a desired state of the controlled system
within a particular time interval. For example,
in the glass cockpit domain, predictive infor-
mation could be used to activate context speci-
fiers that indicate whether a selected altitude
and/or airspeed can be achieved in time to

126

meet a restriction. Such predictive information
is often available internally to the automation.

Second, more explicitly modeling operator
workload may also improve GT-CATS’ pre-
dictive ability. The OFM-ACM provides this
capability by explicitly modeling cognitive
and perceptual actions, such as monitoring the
altimeter to ensure that the desired altitude is
reached. The micro-analysis in the current
experiment showed that as pilots became,
busier they chose lower levels of automation to
reduce their cognitive workload.

Third, temporal factors that underpin the
revision process warrant examination. The
micro-analysis in the current experiment
suggests that the revision process could be
improved if better information about the time
window during which an action can be
reasonably interpreted is available. Informa-
tion about when to execute the revision proc-
ess for a particular action might be included in
the OFM-ACM.

Beyond improvements to GT-CATS itself,
further research should explore applications of
activity tracking. First, GT-CATS would be
useful for interpreting pilot navigation activi-
ties needed to comply with new ATC automa-
tion. This application requires that that the
OFh4-ACM include additional pilot activities
(e.g., descents that comply with automation-
derived ATC directives, in addition to present
descent methods).

This would enable researchers and pilots alike
to visualize the task or evaluate proposed pro-
cedures. Second, GT-CATS can help under-
stand other flight deck areas, such as non-
nominal operations. Such applications are
expected to result in future enhancements to
the underlying architecture of GT-CATS.

Other applications should focus on the use of
output from GT-CATS as a source of knowl-
edge f a operatar’s assistants and intelligent
tutors. Aiding systems could use GT-CATS to
provide intelligent assistance, by offering
advice, reminders, or alerts regarding
unexpected activities. GT-CATS’ OFM-ACM
is also suitable as the student and expert
models required by an intelligent tutoring
systems. Predictions for mode selections
provide expert knowledge; GT-CATS’
revision process enables alternative mode
selections to be explored. The OFM-ACM can
also model student knowledge. Such research
may involve the development of a “buggy”
OFM-ACM that represents common operator
errors in using modes of automation, as well as
operator activities required in abnormal
operating conditions. One such effort is in
progress (ref. 15).

In conclusion, GT-CATS research demon-
strates a viable methodology for predicting
and interpreting operator activities in complex
systems. Along with earlier research efforts,
GT-CATS serves as the basis for important
insights into the application of activity track-
ing. Ultimately, it is hoped that this research
may have a positive impact on the safe and
efficient operation of complex systems of the
future.

127

References
9. Sheridan, T. B. (1992). Telerobotics,

automation, and human supervisory
control. Cambridge, MA: MIT Press.

1.

2.

3.

4.

5.

7.

8.

Mitchell, C. M. (1987). GT-MSOCC: a
research domain for modeling human-
computer interaction and aiding decision
making in supervisory control systems.
IEEE Transactions on Systems, Man, and
Cybernetics, I7(4), 553-570.

Banks, S. B., and Lizza, C. S. (1991).
Pilot’s Associate: a cooperative,
knowledge-based system application. IEEE
Expert, 6(3), 18-29.

Geddes, N. D., and Hammer, J. M. (1991).
Automatic display management using
dynamic plans and events. Proceedings of
the Sixth International Symposium on
Aviation Psychology, Columbus, OH.

Rubin, K.S., Jones P. M., and Mitchell, C.
M. (1988). OFMspert: Inference of
operator intentions in supervisory control
using a blackboard architecture. IEEE
Transactions on Systems, Man, and
Cybernetics, 18(4), 6 18-637.

Smith, S. C., Govindaraj, T., and Mitchell,
C. M. (1990). Operator Modeling in Civil
Aviation. Proceedings of the 1990 IEEE
Conference on Systems, Man, and
Cybernetics, Los Angeles, CAY 5 12-5 14.

Chu R. W., Jones, P. M., and Mitchell, C.
M. (1995). Using the operator fhction
model and OFMspert as the basis for an
intelligent tutoring system: Towards a
tutor/aid paradigm for operators of
supervisory control systems. IEEE
Transactions on Systems, Man, and
Cybernetics, 25, 1054- 1075.

Billings, C. E. (1991, August). Human-
centered aircrafi automation: a concept
and guidelines (NASA Contractor Report
103885). Moffett Field, CA: NASA Ames
Research Center.

10. Bainbridge, 1987

11. Woods, D. D., Johannesen, L. J., Cook, R.
I., and Sarter, N. B. (1994). Behind
human error: Cognitive systems,
computers, and hindsight. Dayton, OH:
Crew Systems Ergonomic Information and
Analysis Center. rn

12. Kirlik, A. (1995). Requirements for
psychological models to support design:
Toward ecological task analysis. In J. M.
Flach, P. A. Hancock, J. K. Caird, and K.
J. Vicente (Eds.), An ecological approach
to human machine systems I: A global
perspective. Hillsdale, NJ: Lawrence
Erlbaum.

13. Mitchell, C. M. and Saki, D. L. (1987).
Use of model-based qualitative icons and
adaptive windows in workstations for
supervisory control systems. IEEE
Transactions on Systems, Man, and
Cybernetics, 17(4), 573-593.

14. Thurman, D. A., and Mitchell, C. M.
(1994). Methodology for the design of
interactive monitoring interfaces.
Proceedings of the IEEE International
Conference on Systems, Man, and
Cybernetics, Piscataway, NJ, 1739-1744.

15. Chappell, A. R., and Mitchell, C. M.
(1 995). Addressing the trained
novice/expert performance gap in
complex dynamic systems: A case-based
intelligent tutoring system. Proceedings of
the 1994 IEEE Conference on Systems,
Man, and Cybernetics, Vancouver, BC,
4557-4562.

16. Rouse, W. B. (1984). Design and
evaluation of computer-based support
systems. In G. Salvendy (Ed.), Advances in
Human Factors/Ergonomics, Volume I :

128

Human-Computer Interaction. New York:
Elsevier.

17. Rouse, W. B., and Morris, N. M. (1985).
Conceptual design of a human error
tolerant interface for complex engineering
systems. Proceedings of the Second
IFAC/IFIP/IFORS/IEA Conference on
Analysis, Design, and Evaluation of Man-
Machine Systems. Varese, Italy.

18. Rouse, W. B., Geddes, N. D., and Curry, R.
E. (1987). An architecture for intelligent
interfaces: Outline of an approach to
supporting operators of complex systems.
Human-Computer Interaction, 3, 87-122.

19. Palmer, E. A., Hutchins, E. L., Ritter, R.
D., and vancleemput, I. (1991). Altitude
deviations: breakdowns of an error
tolerant system (NASA Technical
Memorandum 108788). Moffett Field,
CA: NASA Ames Research Center.

20. Funk, K. H., and Kim (1995) Agent-based
aids to facilitate cockpit task
management. Proceedings of the .I 995
IEEE Conference on Systems, Man, and
Cybernetics, 1521-1526.

2 1. Boy, G. A. (1 987). Operator assistant
systems. International Journal of Man-
Machine Studies, 27, 54 1-554.

22. Broadwell, M. M. (1987). Pilot’s
Associate: challenges and approaches.
Proceedings of the Third Annual Artificial
Intelligence and Advanced Computer
Technology Conference, Long Beach, CA,
29 7-3 04.

23. Smith, D. M., and Broadwell, M. M.
(1989). The’ Pilot’s Associate: an
overview. Proceedings of the Eighth
International Workshop on Expert Systems
and Their Applications, Avignon, France,
263-269.

24. Mitchell, C. M. (1995). Human-machine
system models: A prerequisite to the
design of human-computer interaction in
complex dynamic systems. In A. P. Sage
and W. B. Rouse (Eds.), Handbook of
systems engineering and management.
New York: John Wiley and Sons, to
appear.

25. Callantine, T. J., and Mitchell, C. M.
(1994). A methodology and architecture
for understanding how operators select and
use modes of automation in complex
systems. Proceedings of the I994 IEEE
Conference on Systems, Man, and
Cybernetics, San Antonio, TX, 1751-
1756.

26. Hammer, J. M., and Rouse, W. B. (1982).
Design of an intelligent computer-aided
cockpit. Proceedings of the 1982
International Conference on Cybernetics
and Society, Seattle, WA, 449-453.

27. Rouse, W. B., Rouse, S., and Hammer, J.
M. (1982). Design and evaluation of an
onboard computer-based information
system for aircraft. IEEE Transactions on
Systems, Man, and Cybernetics, 12(4),
45 1-463.

28. Geddes, N. D. (1985). Intent inferencing
using plans and scripts. Proceedings of the
First Annual Aerospace Applications of
Artzjkial Intelligence Conference, Dayton,
OH.

29. Geddes, N. D. (1989). Understanding
human operators’ intentions in complex
systems. Unpublished Ph.D. dissertation.
Atlanta, GA: Georgia Institute of
Technology.

30. Chambers, A. B., and Nagel, D. C. (1985).
Pilots of the future: Human or Computer?
Communications of the ACM, 28(1 I) ,
1187-1 198.

129

3 1. Hollnagel, E. (1 987). Commentary: Issues
in knowledge-based decision support.
International Journal of Man-Machine
Studies, 2 7 , 743-75 1.

32. Rasmussen, J., and Goodstein, L. P.
(1987). Decision support in supervisory
control of high-risk industrial systems.
Automatica, 663-67 1 .

33. Roth, E. M., Bennett, K. B., and Woods,
D. D. (1987). Human interaction with an
“intelligent” machine. International
Journal of Man-Machine Studies, 27, 479-
525.

34. Woods, D. D. (1987). Commentary:
Cognitive engineering in complex and
dynamic worlds. International Journal of
Man-Machine Studies, 27, 571-585.

35. Woods, D. D. (1986). Cognitive
technologies: The design of joint human-
machine cognitive systems. AI Magazine,
86-92.

36. Woods, D. D. and Hollnagel, E. (1987).
Mapping cognitive demands in complex
problem-solving worlds. International
Journal of Man-Machine Studies, 26, 257-
275.

37. Woods, D. D. and Roth, E. M. (1988).
Cognitive systems engineering. In
Hollander, M., (Ed.), Handbook of
Human-Computer Interaction. New York:
Springer-Verlag.

38. Bushman, J. B., Mitchell, C. M., Jones, P.
M., and Rubin, K. S . (1993). ALLY: An
operator’s associate for cooperative
supervisory control systems. IEEE
Transactions on Systems, Man, and
Cybernetics, 23(1), 11 1-128.

39. Jones, P. M., and Mitchell, C. M. (1994).
Human-computer cooperative problem
solving: Theory, design, and evaluation of
an intelligent associate system. IEEE

Transactions on Systems, Man, and
Cybernetics, 25(7), 1039- 1053.

40. Shalin, V. L., Geddes, N. D., Mikesell,
B.G., and Ramamurthy, M. (1993).
Evidence for plan-based performance and
implications for information management
on the commercial aviation flight deck.
Proceedings of the Fourth International
Conference on Human-Machine
Interaction and Artificial Intelligence in
Aerospace, Toulouse, France. -

*

41. Jones, P. M., and Mitchell, C. M. (1987).
Operator modeling: Conceptual and
methodological distinctions. Proceedings
of the Human Factors Society 31st Annual
Meeting, 3 1-35.

42. Rasmussen, J. (1986). Information
processing and human-machine
interaction. Amsterdam: North Holland.

43. Baron, S . (1984). A systems approach to
modeling discrete control performance. In
W. B. Rouse (Ed.), Advances in Man-
Machine Systems Research, 1,
Greenwhich, CN: JAI Press, Inc, 1-48.

44. Miller, R. A. (1985). A systems approach
to modeling discrete control performance.
In W. B. Rouse (Ed.), Advances in man-
machine systems research, volume 2.
Greenwich, CN: JAI Press, Inc., 177-248.

45. Wickens, C. D. (1984). Engineering
psychology and human performance.
Columbus, OH: Memll.

46. Vicente, K. J., and Rasmussen, J. (1992).
Ecological interface design: Theoretical
foundations. IEEE Transactions on
Systems, Man, and Cybernetics, 22(4),
589-607.

47. Shank, R., and Abelson, R. (1977). Scripts,
plans, goals, and understanding. Hillsdale,
NJ: Erlbaum.

130

.

48. Wilensky, R. (1983). Planning and
Understanding. Reading, MA: Addison
Wesley.

49. Nii, P. (1986). Blackboard systems. AI
Magazine, 7(2) and 7(3), June, 1986.

50. Jones, P. M., Chu, R. W., and Mitchell, C.
M. (1 994). A methodology for human-
machine systems research: knowledge
engineering, modeling, and simulation.
IEEE Transactions on Systems, Man, and
Cybernetics, 25(7), 1025- 1038.

5 1 . Colucci, F. (1995). Rotorcraft Pilot’s
Associate update: The army’s largest
science and technology program.
Vertiflight, 41 (2), 16-20.

52. Funk, K. H., and Lind, J. H. (1992).
Agent-based pilot-vehicle interfaces. IEEE
Transactions on Systems, Man, and
Cybernetics, 22(6), 1309-1322.

53 . Onken, R., and PrevGt, T. (1995).
CASSY-cockpit assistant system for IFR
operation. Proceedings of the 19th ICAS
Congress, Anaheim, CA.

54. Robson, M., Fairbanks, M., and Shorthose,
M. (1 995). Final report on a feasibility
study into an intelligent flight path
monitor. London: Civil Aviation
Authority.

55. Amalberti, R., and Deblon, F. (1992).
Cognitive modeling of fighter aircraft
process control: a step towards an
intelligent on-board assistance system.
International Journal of Man-Machine
Studies, 36, 639-671.

56. Mellor, P. (1994). CAD: Computer-aided
disaster. High Integrity Systems, 1(2), 101-
156.

57 . Hughes, D. and Dornheim, M. A. (1995).
Accidents direct focus on cockpit

automation. Aviation Week and Space
Technology, 30 January, 52-54.

58. Eldredge, D., Dodd, R. D., and Mangold, S.
J. (1991). A review and discussion offlight
management system incidents reported to
the aviation safety reporting system.
Cambridge, MA: Volpe National
Transportation Systems Center.

59, Degimi,.,,A,,. Mitchell, C. M., and Chappell,
A. R. (1995) Task models to guide
analysis: Use of the operator function
model to represent mode transitions.
Proceedings of Eighth International
Symposium on Aviation Psychology,
Columbus, OH.

60. Funk, K. H., Lyall, B., and Riley, V.
(1995). Perceived human factors
problems of flightdeck automation (Phase
I final report). Corvalis, OR: Oregon
State University.

61. Weiner, E. L. and Curry, R. E. (1980).
Flight-deck automation: Promises and
problems. Ergonomics, 23(10), 995-101 1.

62. Boehm-Davis, D. A., Curry, R. E., Wiener,
E. L., and Harrison, R. L. (1983). Human
factors of flight-deck automation-report
on a NASNindustry workshop.
Ergonomics, 26, 953-961.

63. Curry, R. E. (1985). The introduction of
new cockpit technology: A human factors
study (NASA Technical Memorandum
86659). Moffett Field, CA: NASA Ames
Research Center.

64. Wiener, E. L. (1985). Human factors of
cockpit automation: field study offlight
crew transition (NASA Contractor Report
177333). Moffett Field, CA: NASA Ames
Research Center.

65. Wiener, E. L. (1988). Cockpit
automation. In E. L. Wiener and D. C.

131

Nagel (Eds.), Human factors in aviation.
San Diego: Academic Press.

66. Braun, R. and Fadden, D. M. (1987).
Flight deck automation today - where do
we go from here? Proceedings of the
Conference on Aerospace Behavioral
Engineering Technology, 141-149.

67. Wiener, E. L. (1989). The human factors
of advanced technology (“glass cockpit”)
transport aircraft (NASA Contractor
Report 177528). Moffett Field, CA:
NASA Ames Research Center.

68. Sarter, N. B., and Woods, D. D. (1992).
Mode error in supervisory control of
automated systems. Proceedings of the
Human Factors Society 36th Annual
Meeting, Atlanta, GA.

69. Sarter, N. B., and Woods, D. D. (1994).
Pilot interaction with cockpit automation
11: An experimental study of pilots’ model
and awareness of the Flight Management
System (FMS). International Journal of
Aviation Psychology, 4(1), 1-28.

70. Sarter, N. B., and Woods, D. D. (1995).
“Strong, silent, and ‘out-ofthe-loop ’ ”:
Properties of advanced (cockpit)
automation and impact on human-
automation interaction (CSEL Report 95-
TR-01). Columbus, OH: Cognitive Systems
Engineering Laboratory, Ohio State
University.

71. Degani, A., Shafto, M., and Kirlik, A.
(1 995). Mode usage in automated
cockpits: Some initial observations. In T.
B. Sheridan (Ed.), Proceedings of the
International Federation of Automatic
Control; Man-Machine Systems (IFAC-
MMS) Conference, Boston, MA: IFAC.

72. Nievergelt, J., and Weydert, J. (1980).
Sites, modes, and trails: Telling the user of
an interactive system where he is, what he
can do, and how to get to places. In R. M.

Baecker and W. A. S. Buxton (Eds.),
Readings in human-computer interaction:
A multidisciplinary approach. Los Altos,
CA: Morgan Kaufmann.

73. Tesler, L. (1981). The Smalltalk
environment. Byte, August, 90-147.

74. Smith, D. C., Irby, C., Kimball, R.,
Verplank, W., and Harslem, E. (1982).
Designing,the Star User Interface. In R. M.
Baecker and W. A. S . Buxton (Eds.),
Readings in human-computer interaction:
A multidisciplinary approach. Los Altos,
CA: Morgan Kaufmann.

75. Norman, D. A. (1981). Categorization of
action slips. Psychological Review, 88(1),
1-15.

76. Lewis, C. , and Norman, D. A. (1986).
Designing for error. In D. A. Norman and
S. W. A. Draper (Eds.), User centered
system design. Hillsdale, NJ: Lawrence
Erlbaum Associates.

77. Norman, D. A. (1988). The psychology of
everyday things. New York: Basic Books.

78. Monk, A. (1986). Mode errors: A user-
centered analysis and some preventative
measures using keying-contingent sound.
International Journal of Man-Machine
Studies, 24, 313-327.

79. Sellen, A. J., Kurtenbach, G. P., and
Buxton, W. A. S. (1992). The prevention
of mode errors through sensory feedback.
Human-Computer Interaction, 7, 141-
164.

.

80. Perlman, G. (1985). Making the right
choices with menus. In R. M. Baecker and
W. A. S. Buxton (Eds.), Readings in
human-computer interaction: A
multidisciplinary approach. Los Altos,
CA: Morgan Kaufmann.

132

8 1. Vakil, S. S., Hansman, R. J., Jr., Midkiff,
A. H., and Vaneck, T. (1995). Mode
awareness in advanced autoflight systems.
Proceedings of the 1995
IFA C/IFIPlIFORS/IEA Conference on
Analysis, Design, and Evaluation of Man-
Machine Systems. Vancouver, B.C.

82. Sherry, L., Youssefi, D., and Hynes, C. H.
(1 995). A formalism for the specification
of operationally embedded reactive
avionics systems (Publication C69-5350-
001). Phoenix, AZ: Honeywell.

83. Reason, J. T. (1990). Human error.
Cambridge: Cambridge University Press.

84. Suchman, L. (1987). Plans and situated
actions: The problem of human-machine
communication. New York: Cambridge
University Press.

85. Norman, D. A. (1990). The 'problem' of
automation: Inappropriate feedback and
interaction, not 'over-automation.'
Philosophical Transactions of the Royal
Society of London, B 327, 585-593.

86. Simon, H. A. (1957). Models of Man, New
York: John Wiley and Sons.

87. Simon, H. A. (1969). The sciences of the
artificial. Cambridge, M A : MIT Press.

88. Gopal, B. S., andRao, C. R. S. (1991).
Indian Airlines A320 VT EP: Report of the
technical assessors to the court of inquiry.
Indian Government.

89. Thurman, D. A. and Mitchell, C. M.
(1995). A methodology for the design of
monitoring and control interfaces to
highly autonomous systems, Proceedings
of the 6th Annual IFAC/IFORS/IFIP/SEA
Symposium on Man-Machine Systems,
Boston, MA.

90. Jones, P. M., Mitchell, C. M. and Rubin, K.
S. (1988). Intent inferencing with a.
model-based operator's associate.
Proceedings of the Sixth Symposium on
Empirical Foundations of Information and
Sofrware Sciences, 249 - 258.

91. Funk, K. H., and Lind, J. H. (1992).
Agent-based pilot-vehicle interfaces. ZEEE
Transactions on Systems, Man, and
Cyhrneticq 22(6>,, 1309- 1322.

92. Clancey, W. J. (1987). Knowledge-based
tutoring: The GUIDON program.
Cambridge, MA: MIT Press.

93. Wenger, E. (1987). Artificial intelligence
and tutoring systems: Computational and
cognitive approaches to the
communication of knowledge. Los Altos,
CA: Morgan Kaufmann.

94. Bainbridge, L. (1979). Verbal reports as
evidence of the process operator's
knowledge. lnternational Journal of Man-
Machine Studies, 11, 41 1-436.

95. Williams, J. A. and Mitchell, C. M.
(1993). Effects of integrated flight path
and terrain displays on controlled flight
into terrain. Proceedings of the 1993
IEEE Conference on Systems, Man, and
Cybernetics, Le Touquet, France, 709-7 14.

96. Williams, J. A. and Mitchell, C. M. (1993).
Effects of integrated flight path and terrain
displays on controlled flight into terrain.
Proceedings of the 1993 IEEE Conference
on Systems, Man, and Cybernetics, Le
Touquet, France, 709-7 14.

133

4

APPENDIX A: GRAPHICAL DEPICTION OF GT-CATS OFM-ACM

T I

Conditions

Phase 1eV.l:
1. curront-phase climb in-progress
2. current-phase cruiso in-progress
3. currant-phase descent in-progress

8ubpha.r lrvrlr
4. acrft-state alt above-origin-apt
5. acrft-stat. abs-alt at-or-above-1000
6. acrft-state abs-alt at-or---3000
7. current-phaso cruise in-progress

8. current-phase cruise in-progress

9. curront-phase doscont in-progress

10. current-phase descent in-progress

& aircraft-position more-than-5-miles-to top-of-descurt

aircraft-position less-than-5-milos-to top-of-descent

& aircraft-position more-than-5-miles-to ond-of-descent

& aircraft-position less-than-5-milos-to er~d-of-doscant

135

I I I

6

setuplengage monitorladjust
HDG SEL HDG SEL tur

perform FD
HDG SEL tur engage

HDG HOLD
11

runction level:
1. acrft-state alt below-limits
2. acrft-state hdg outside-limits
3. acrft-state hdg within-limits

Modo Selection level:
4. afs-state cmd-mode fd
5. afs-state cmd-mode fd
6. ais-state cmd-ntoda fd

Task 1rV.l:
7. afs-state cmd-mode fd
8. afs-state roll-engd not-hdg-sel
9. afs-state roll-angd Mg-sal
10. afs-state roll-engd Mg-sal
11. afs-state roll-engd not-Mg-hold
12. afs-state roll-angd hdg-hold

136

.

-
Function lmvml:
1.

nod.

3.
a .

k
&
k
&

4.
k
k
&

5 .
k
k
c

6.
k
L

acrft-stat. alt blow-limits

smlmction 1-1:

fms-stat. vmrt-profilm not-progxmd
ais-stat. ad-modo ad
acrft-stat. alt mrm-thm-aOOO-frol-tgt
afs-stat. pitch-ongd not-vs

fms-stat. vmrt-profilo prow&

a f ~ - ~ t a t ~ ad-pod. id

afs-stat. pitch-m-d not-alt-cap-rqd-alt

afS-St8t. 0d-h. ad
afs-stat. tsp clb
afs-stato pitch-mwd not-alt-cap-rqd-alt
--stat. vmrt-profilm not-progd
.f.-.t.t. d-pod. ad
acrft-stat. alt lmss-than-2000-trotgt
afs-stat. pitch-m-d not-alt-cap-rqd-alt
afs-stat. mcp-alt within-limits
afs-~tat. &-mod. ad
afs-stat. pitch-.& .lt-CW-rqd-alt

- -
Task l m l : 1 0 . acrft-.tat. mbs-alt at-or-rba-1000
7. acrft-stat. ab.-alt at-or-abovm-1000 e --stat. vort-profilm progrrd

& --stat. vmrt-profilm-intcpt p r o u d 8. afS-Stlt. --pod* td
9. afs-~tat~ athr -ad Mt-fl-ch n+ --
10. afs-statm athr-md tl-Ch afs-stat. r o l l - d rmv
11. acrft-stat. mbs-alt at-or-rborr-1000 21. afs-stat. pitch-& a1t-c-

11. acrft-stat. abn-alt at-or-abovm-1000 & fms-8t.t. vut-profilm pronxmd
fms-stat. vut-profilm-intcpt prownd

afs-stat. r o l l - d r m v

k fms-stat. vmrt-profilm prognd
or c fmn-stat. vmrt-profilo-intcpt p m g r d

or
la. ais-stat. pitch-mngd not-rmv afs-stat. r o l l - d m r v

k afs-StatO pitch-arud IlOt-mV 23. af8-Stat. athr-*IIgd Spd
13. afS-Statm pitch-md .P.V

137

climb to 0 3000 n

I

V

HDG HOLD arm LNAV

mnction level:
1. acrft-state hdg within-limits

Mode Selection
2. afs-state
3. fms-state

& afs-state
& afs-state
& afs-state

4. fms-state
& afs-state

5. fms-state
& afs-state
& afs-state

1.v.1:
d - m o d . fd
lat-profile not-progrmd
cma-mode cmd
roll-ongd hdg-.el
mcp-hdg within-limits
lat-profile prognad
c m d - d e cmd
lat-profile not-proprmd
crdl-mode d
roll-engd not-hdg-sel

Task level:
6. afs-state
7. afs-state
8. afs-state
9. fme-state

& afs-state

af e-state
10. afs-state

& afs-state
11. afs-state
12. afs-state
13. afs-state
14. fme-stat.

& afs-state

afs-state

or

or

roll-engd not-hdg-hold
afs-state d - m o d e fd

lat-profile-intcpt progrmd
wp-hdg within-limits

roll-engd nOt-lMV

roll-armed lnav
roll-engd not-lnav
roll-armed not-lnav
roll-engd lnav
roll-engd not-hdg-hold
roll-engd hdg-hold
lat-profile-iatcpt progrmd
roll-engd not-lnav

roll-armed lnav

138

autoflight turn onto hold
head ing heading

1

arm LNAV

Function level:
1. acrft-state M g outside-limits

W e salection
2. afs-state
3. fms-state

& afs-state
4. fme-state

& afs-state

Ta8k IOVOl:
5. afm-state
6. afs-state
7. afs-state
8 . fm-state

& afs-state

afa-state
9. af8-state
10. afs-state

& afs-state
11. afs-state

or

level :
&-mode fd
lat-profile not-progrmd
d-mode cpld
lat-profile progimd
cmd-mode cmd

roll-engd not-hdg-sal
roll-egd Mg-sol
roll-engd not-hdg-sal
lat-profile-intcpt proOrmd
roll-engd not-lnav

roll-armed lnav
roll-engd Mg-sal
roll-engd not-1nav
roll-armed not-lnav
roll-engd 1 M V

139

hold

Rrnction level:
1. acrft-state abs-alt at-or-above-1000
2. acrft-state abs-alt at-or-above-1000

Task level:
3. acrft-state abs-alt at-or-above-1000
4. acrft-state abs-alt at-or-above-1000
5. acrft-state abs-alt at-or-above-1000

c afs-state mcp-spd outside-limits
& afs-state pitch-engd not-alt-cap

6. acrft-state abs-alt at-or-above-1000
& afs-state tap not-clb

7. afs-state cmd-modo fd
or

afs-state cmd-mode cmd

140

cruise w
hold

?unction level:
1. acrft-state Ma outside-limits

Mode Selection level:
2. fre-state lat-profile not-progrmd

3. fms-state lat-profile progrPd
& afs-state d-mode d

& afs-state

Task level:
4. afs-state
5. afe-state
6. fma-state

& afs-state

af s-Btate
7. aim-state

& afs-state
8. afa-state

or

d - m o d e d

roll-engd not-hdg-sel
roll-engd Mg-eel
lat-profile-intcpt progrnd
roll-engd not-lnav

roll-anmd lnav
roll-engd not-lnav
roll-armed not-lnav
roll-ongd lnav

141

hold

I I

engage monitor HDG
HDG HOLD HOLD hold

Q

Rrnction level:
1. acrft-state hag within-limits

Mode selection
2. fms-state

& afs-state
& afs-state

3. fm-state
& afs-state

4. fm-state
& afs-state
& afs-state

level :
lat-profile not-progrmd
roll-engd hdg-sel
mcp-hdg Withh-lidtS
lat-profile p r o m
4 - m o d e &
lat-profile not-progrmd
&-mode crpd
roll-ongd not-Mg-#el

Task level:
5. afs-state
6. fms-state

& afs-state

af s-state
7. afs-state

& afs-state
8. afs-state
9. afs-state
10. afs-state
11. fnu-state

& afs-state

af s-state

or

or

mcp-Mg within-limits
lat-profile-intcpt progrmd
roll-engd XIOt-lMV

roll-armed lnav
roll-engd ZlOt-lMV
roll-armed nOt-lMV
roll-engd 1 M V
roll-engd not-hdg-hold
roll-engd Mg-hold
lat-profile-intcpt progrmd
roll-engd XIOt-lMV

roll-armed l M V

.

142

.

.

altitude altitude

-
-tion 1.~01:
1. acrft-state alt within-limits

yod. 8oloction 1-1:
2. frs-stat. vort-profilr not-progrdl

& afs-stat. rep-alt outsido-limits
& afs-stat. cd-w cd
or

afs-stat. rep-alt within-limits
& afs-stat. cad-& c d
& afs-stat. pitch-md alt-hold

3. fru-stat. vort-profilo progzd
& afs-stat. d - m d o cd
& afs-stat. pitch-mgd not-alt-hold

4. frr-state lat-profile Pot-p-
& afs-stat. cd-& c d
& afs-itat. pitch-ongd VI

Task 1-1:
5. afs-stat. rep-alt artsido-limits
6. afs-stat. pitch-ongd alt-hold
7. afs-stat. athr-ad spd
8. acrft-stat. abs-alt at-or-abovr-1000

& fms-stat. vort-profilo p r d
& fmm-stat. vort-profilo-intcpt progrd
or

afm-stat. roll-- vnav

9. afs-stat. pitch-ongd pot-vnav
& afs-stat. pitch-& pot-vnav

10. afs-stat. pitch-mgd vnav-path
11. fms-stat. vnav-spd-int off

& --stat. tat-spd outsido-limits
& afs-stat. pitch-oagd vnav

--stat. vlrcrv-spd-int on
or

& afs-state rep-spd outsido-limits

& fms-stat. tgt-spd within-limits
& fms-state mar-spd-int on
& afs-stat. pitch-mgd vnav

12. fiu-8tatO 8ChOd-tgt-8pd withhl-limitS

13. rfm-mtata pitch-- VS

14. afs-stat. pitch-mgd vs
15. afs-stat. athr-oagd spd
16. acrft-stat. ab.-alt at-or-rba*r-1000

& fnu-stat. vort-profilo progrd
& fu-state vort-profilo-intcpt progrd

or
afa-stat. roll-arnd vnav

143

crulse

nmction 1-1:
1.

Yodo

2.
k
k

k
k

k

k
k

k
k

k

k

k

T88k
6.
7.
8.

3.

4.

5 .

k
k

or

9.

10.
&

144

cruise 9
LNAV turn

?unction level:
1. acrft-state M g outside-limits

W e Selection level:
2. fme-state lat-profile not-progrm8

3. fme-state lat-profile prourmd
& afe-state cmd-mode cmd

& afs-state cmd-mode cmd

145

descent to I

hnction level:
1. acrft-state Mg within-limits

#ode Selection
2. fm8-state

& afs-state
& af8-state

3. fnu-state
& af8-state

4. fnu-mtate
& afs-state
& afs-state

level :
lat-profile not-progrmd
roll-engd hdg-ne1
V - M g withh-lWt8
lat-profile progrmd
--mode cmd
lat-profile not-progrmd
d-mode cmd
roll-engd not-hdg-Bel

146

?unction level:
1.

Mode
2.

&
&
or

&
&

3.
&
&

4.
&
&

Task
5.
6.
7.
8.

&

&
or

acrft-state alt within-limits

select ion
fms-state
afs-state
af 8-state

af s-state
af s-state
af e-state
€ma-state
af s-state
af 8-state
fms-state
af s-state
af s-state

level:
af e-state
afs-state
afs-state

level:
vert-profile not-progrmd
mcp-alt outside-limits
d - m o d e d

mcp-alt within-limits
4 - d e 4
pitch-mggd alt-hold
vert-profile progrmd
cmd-&e cmd
pitch-mggd not-alt-hold
lat-profile not-progrmd
&-mode d
pitch-~pd 98

mcp-alt outside-limits
pitch-mggd alt-hold
athr-engd spd

acrft-state abs-alt at-or-above-1000
fms-state vert-profile p r o g d
fms-state vert-profile-intcpt progrmd

9.
10.
11.
12.

&
&

or

13.

14.
15.

&

&
&
or

&
16.

&
&
&

afs-state pitch-engd vs
afs-state pitch-engd vs
afs-state athr-engd spd
acrft-state abe-alt at-or-above-1000
fms-state
fms-state

afs-etate
afs-state
af a-state
afs-state
fms-state
fms-atate
afs-state

fma-state
afs-state
fma-state
fms-state
fms-state
af s-state

vert-profile progrmd
vert-profile-intcpt progrmd

roll-armed vnav
pitch-engd not-vnav
pitch-armed not-vnav

vnav-spd-int off
pitch-mggd mv-path

tm-spd outside-limits
pitch-agd =V

vnav-spd-int on

ached-tgt-spd within-limits
tgt-spd within-limits
vnav-spd-int on
pitch-engd vnav

mcp-spd outside-limitn

afs-state roll-avd vnav

147

init 0 cruise

LNAV turn

m c t i o n level:
1. acrft-state M g outside-limits

Mode Selection level:
2. fms-state lat-profile not-progmd

3. fms-state lat-profile progmd
P afs-state cmd-mode cmd

& afm-ntate cmd-mode cmd

148

4

I

1

engage monitor HDG
HDG HOLD HOLD hold

v
?unction level:
1. acrft-state hdg within-limits

Mode Selection level:
2. fms-state lat-profile not-pr-
I afs-state roll-engd hdg-sel
& afs-state BICp-hdp within-limits

3. fms-state lat-profile proprmd
c afs-state cmd-mode cmd

4. fms-state lat-profile not-pr-
& afs-state and-mode cmd
& afs-state roll-agd not-hdg-sol

149

Rrnction levol:
1. acrft-mtate M g outside-limits

150

hold

Punction level:
1. cutrat-phase cruise in-progress

Task level:
2 . currat-phase cruise in-progreS8

151

engage monitor HDG
HDG HOLD HOLD hold

?unction level:
1. acrft-state hag within-limits

W e Selection level:
2. fms-state lat-profile not-progrmd

& afs-state roll-end hdg-sel
& afs-state mcp-Mg within-limits

3. fms-state lat-profile progzmd
& afs-state ,cmd-mode d

4 . fnu-state lat-profile not-progrmd
& afs-state cmd-mode cmd
& afs-state roll-engd not-Mg-sel

152

.

.

mction level:
1. acrft-state alt within-limits

mode Selection
2. fms-state

& afs-state
& afs-state

afs-state
& afs-stat.
& afs-state

3. fms-stat.
& afs-atate
& afs-state

4. fms-state
& afs-state
& afs-atate

or

level :
vert-profile not-progrmd
mcp-alt outside-limits
c m a - d m d

mcp-alt within-limits
& - d e d
pitch-engd alt-hold
vert-prof ilm proqrd
cmd-mode cmd
pitch-engd.not-alt-hold
lat-profile not-progrmd
c m d - d e cnd
pitch-engd vs

153

G 2 descent
VNAV step

descent

- -
arm VNAV

7
0

m c t i o n level:
1. acrft-state alt above-limits

Mode Selection level:
2. fms-state vert-profile not-progrmd

& afs-state cmd-mode cmd
& acrft-state alt more-than-2000-from-tgt
& afs-state pitch-engd not-vs
& afs-state pitch-engd not-alt-cap-rqd-alt

3. fms-state vert-profile progrmd
& afa-state cmd-mode cmd
& afs-state tsp clb
& afs-state pitch-engd not-alt-cap-rqd-alt

& afs-state cmd-mode cmd
& acrft-state alt lese-than-2000-from-tgt
& afe-state pitch-engd not-alt-cap-rqd-alt

& afs-state cmd-mode cmd
P afs-state pitch-engd alt-cap-rqd-alt

4 . fms-state vert-profile not-progrmd

5. afs-state mcp-alt within-limits

154

descent w
.

L

.

-
?unction level:
1.

w e

2.
&
&
&

&

&
&
&

3.

4.
&

&
&

5 .
&
c

acrft-state alt below-limits

selection level:
flu-state art-profile not-progmd
afs-state cmd-mode cmd
acrft-state al t nore-thm-2000-fron-t#

afs-state pitch-urgd not-alt-cap-rqd-alt
fu-state art-profile progrmd
afs-state cmd-mode cmd
afs-state t89 clb
afs-state pitch-engd not-alt-cap-rqd-alt
fu-state vert-profile not-progrmd
afs-state cmd-mode cmd
acrft-stat. alt loss-than-20OO-fr~-tgt
afs-state pitch-engd not-alt-cap-rqd-alt
afs-state mcp-alt within-limits
afs-state cmd-modo cmd

afs-8f.te pitch-engd POt-VII

af8-8t.te pitch-agd ale-cap-rqd-alt

155

HDG SEL -
\ \ turn I f

m c t i o n level:
1. acrft-state hdg outside-limits

#ode Selection level:
2. fms-state lat-profile not-prop&

3. fms-state lat-profile progrmd
& afs-state cnd-mode cmd

& afs-state c m d - d e cnd

.

156

.

runetion level:
1. acrft-state M g within-limits

laode Selection level:
2. fms-state lat-profile not-pro&

& afs-state roll-engd Mg-sal
& afs-state mcp-hdg within-limits

3. --state lat-profile progrmd
& afs-state cmd-mode cmd

4. fms-state lat-profile not-proprmd
& afs-state cmd-nmde cnul
& afs-state roll-engd not-Mg-sal

157

=tion level:
1. acrft-state alt within-limits

W e Selection level:
2 . fme-state vert-profile not-proprmd

& afs-state mcp-alt outside-limits
& ais-state cmd-mode cmd
or

afs-state mcp-alt within-limits
& afs-state cmd-mode cmd
& afs-state pitch-engd alt-hold

3 . fms-state vert-profile progrd
& afs-state d - m o d e cmd
& afs-state pitch-en# not-alt-hold

4. fm-state lat-profile not-progrmd
& afs-state cmd-mode d
& afs-state pitch-engd VB

158

.

.

-
mction 10-1:
1.

Mod.
2.

&
&
&
&

&
&
&

3.

4.
&
P
&

5.
&

&

Task
6.

acrft-state alt klor-limits

Selection 1-1:
fms-state vort-profile not-progrmd
afs-state 4 - m o d e cmd
acrft-state alt more-than-2000-from-tgt
afs-state pitCh-Ongd not-vs
afs-state pitch-engd not-alt-cap-rqd-alt
fms-state vert-profile progrmd
afs-state cmd-modo cmd
afs-state tsp clb
afs-state pitch-engd not-alt-cap-rqd-alt
fms-state vert-profile not-progrmd
rfs-state &-mode 4
acrft-state alt less-than-2000-from-tgt
afs-state pitch-ongd not-alt-cap-rqd-alt
afs-state mcp-alt within-limits
afs-state 4 - m o d e cmd

11. fnu-state vnav-spd-int off
& fnu-state tm-8pd OUtSide-lhit8
& afs-state pitch-engd vnav

fms-state vnav-spd-int on
or

& afs-stat. mcp-spd outside-limits

& fms-state tgt-spd within-limits
& fnu-state vnav-spd-int on

13. afs-state pitch-engd not-vs

14. afs-state pitch-engd vs
15. afs-state athrrengd not-spd

12. fnu-state schod-tgt-spd within-limits

P rf8-8tate pitCh-OXlgd M.V

& afs-state pitch-engd not-alt-cap

~~~ 

16. afs-state athr-ongd spd 
17. acrft-state abs-alt at-or-above-1000 afs-state pitch-engd alt-cap-rqd-alt 

levo1 : 
afs-state athr-ongd not-fl-ch 

fms-state vert-profile Progrmd 
& fmn-state vort-profile-intcpt progrmd 
or 7 .  afs-state athr-ongd fl-ch 

8. acrft-state ab.-alt at-or-abmm-1000 afs-stato roll-axmarl VMV 
18. afs-state pitch-ongd alt-cap 

& fms-state vart-profile progzmd vort-profile-intcpt progrmd 19. acrft-state abs-alt at-or-above-1000 
& fms-state vort-profile progrmd 
& fms-state vert-profile-intcpt progrmd or 

or afs-state roll-axmarl vnav 
9. afs-state pitch-engd not-vnav afs-state roll-armed vnav 

20. afs-state athr-engd spd & ais-state pitch-- not-vnav 
10. afs-state pitch-engd vnav 

159 



Function level: 
1. acrft-state hdg outeide-limits 

Selection loal: 
2. fms-state lat-profile not-progrmd 

3. fms-state lat-profile p r o g d  
P afs-state cmd-mode d 

P afs-state cmd-mode d 

160 



L 

01 arm LNAV 

?unction level: 
1. acrft-state hdg within-limits 

laode Selection level: 
2. fms-state lat-profile not-proprmd 

& afs-state roll-engd hdg-sal 
& afs-state mcp-hdg within-limits 

3. fms-state lat-profile pragnad 
& afs-state cmd-mode cmd 

4.  fms-state lat-profile not-progrmd 
P afm-state &-mode cmd 
& afs-state roll-agd not-hdg-me1 

161 



set zero vs 

Function level: 
1. acrft-state alt within-limitm 

m e  Selection levo1: 
2. fms-state vert-profile n o t - p r e  

& afs-mtate mcp-alt outside-limits 
& afs-state cmd-mode cmd 

or 
afs-state mcp-alt within-limits 

& afs-state cmd-de cmd 
& afs-state pitch-end alt-hold 

3. fms-state vert-profile progrmd 
& afs-state cmd-mode cmd 
& afm-state pitch-end not-alt-hold 

4.  fms-state lat-profile not-progrmd 
& afs-state c m d - d e  cmd 
& afs-state pitch-end vs 

162 



. 

c 

VS descent 

v 
Function level: 
1. 

Mode 
2. 

& 
& 

CI 
& 

3. 
& 

& 
& 

4.  
& 
& 

& 

& 

& 

Task 
6. 
7. 
8. 

5. 

k 

acrft-state alt below-lMts 

"a. afs-state athr-engd fl-ch afs-stat. roll-azmed VMV 
acrft-stat. abs-alt at-or-above-1000 18. afs-stat. pitch-engd a1t-C.p 

, fms-state vert-profile progrmd vert-profile-intcpt Rrogrmd 19. acrft-state abs-alt at-or-8bave-1000 
& fPP.-State VO*-ptOfile progrmd 
& trrm-atate VO*-ptOfih-intcpt or 

afs-state roll-armed vnav or 
afs-state roll-aramd vnav 9. afS-State pitch-engd nOt-mV 

20. afs-stat. athr-angd spa & afS-State pitch-- POt-MaV 
10. ats-state pitch-engd -V 

163 



164 

..... 

altitude engaged 

..... .... 
....................... -.. 

Task level: 
1. afs-state pitch-engd vs 

Subtaak level: 
2. afs-state pitch-engd OS 

3. afs-state mcp-alt outside-limits 
4.  afs-state mcp-vs outside-limits 
5. afs-state pitch-engd vs 

Action lovel: 
6. afa-state mcp-alt outside-limits 
7. afs-state up-vs outside-limits 
8. afs-state pitch-engd v# 



. 

‘I,.,. .................... altitude .... ....................... 

c -- t... 
{’monitor vS’-*-. 
e.. *ADI annunc ’ 

-*.___.__- 4’ 10 

set zero 
vertical speed P I” .................. dial MCP ...... “I 

‘1. .. v s  ........ ................... 1 1 

v 
Task level: 
1. afs-state pitch-engd not-vs 

2. afs-state pitch-engd vs 
3. afs-state pitch-emgd vs 

& afs-state pitch-engd not-alt-cap 

Subtask level: 
4.  afs-state mcp-alt outside-limits 
5. afs-state mcp-alt within-limits 
6. afs-state pitch-ongd vs 
7. afs-atate pitch-ongd va 

Action 1.v.l: 
8. afs-state mcp-alt outside-limits 
9. afs-stat. mcp-alt within-limits 
10. afs-state pitch-engd vs 
11. afs-state pitch-engd vs 

165 



,,.,........ a*..... ..... Os-J----*- 

e. .................. e.. 11  -*--*---00 

' dial MCP '*'* monitor VNA+-. 
altitude ..,I <& annunc/ 

1 2  

Task 1.~01: 
1. afs-stat. pitch-engd vnav 
2. afs-stat. pitch-en@ vnav-path 

Subtask lmv.1: 
3. afs-state pitch-.ngd vnav 
4.  afs-state mcp-alt outside-limits 
5. afs-state pitch-ongd vnav 
6. afs-state pitch-on@ vnav 
7. fms-state tgt-alt outside-limits 
8. fms-state tgt-spd outside-lhits 
9. afs-state pitch-engd vnav-path 
10. afs-stat. pitch-an@ vnav-path 

Action 1ev.l: 
11. afs-stat. mcp-alt outsido-lhits 
12. afe-state pitch-engd vnav 
13. afs-state pitch-engd vnav-path 

166 



e 

...... ....... /-z.-- ..... ,..’ dial MCP . &onitor VN&; 
‘%, altltuda 11 :. PTH innunc I ....................... 19 *---*.----/’ 2 0  

v 
Task 1.V.1: hction 10~01: 
1. afs-stat. pitch-ongd not-vnav 15. afs-stat. mcp-alt outsib-limits 

& afs-state pitch-rrrud not-vnav 16. fm-stat. vort-profilo progrd 
2. afs-stat. pitch-ongd vnav-spd 
3. afs-stat. pitch-.npd vn-v-path 

17. af8-8t.t. m-alt OUt8ide-l~tE 
18. ate-state pitch-mgd VUaV-89d 
19. afs-stat. mcp-alt outsido-limits 

Subtask 1-1: 20. afs-stat. pitch-onad vaav-path 
4. fu-stat. rrrt-profile n0t-p- 
5 .  afs-stat. acp-alt outsido-limits 
6. *-state vort-profilo progrod 

8. afs-stat. mcp-alt outsido-limits 
9. afs-stat. pitch-ongd m V - 8 9 d  
10. afs-stat. pitch-& vnav-89d 
11. afs-stat. pitch-ongd vnav-path 
12. afs-state mcp-alt outddo-l~ts 
13. ais-state pitch-& mV-path 
14. afs-stat. pitch-& vnav-gath 

7. af8-8tatO pitch-& m V - 8 p d  

1 9  

167 



arm VNAV 

..... ...................... 
9 

monitor 
VNAV armed -&- minitor  *e- --e.. VNAV-., 

:.-armed annunc) 
--**__-e ' 10 

--- 
..... ,"" dial MCP "1 

tu,, ........................... IA S 
1 1  1 2  

1 3  

Task level: 
1. fms-state 

& fms-state 

af 8-state 
2. fm-state 

& fme-state 
& afs-state 

fms-state 
afs-state 

3. fms-state 
& fms-state 
& fms-state 
& afe-state 

or 

or 

Subtask level: 
4 .  afs-state 

& fms-state 
5. afs-state 

& fms-state 
6. fine-state 
7. fms-state 

& afs-state 
8. fms-state 

& fms-state 

vert-profile progrmd 
vert-profile-intcpt progrmd 

roll-armed vnav 
vnav-spd-int off 
tgt-spd OUtSide-lwtS 
pitch-agd wv 

vnav-spd-int on 

ached-tgt-spd within-limits 
tgt-spd within-limits 
vnav-epd-int on 

mCp-Spd OUtside-l~tS 

pitch-agd m v  

roll-armed not-vnav 
vert-profile-intcgt progrnd 
roll-armed vnav 
vert-profile-intcgt progrmd 
mav-spd-int off 
vnav-spd-int on 
mcp-spd outside-limits 
Sched-tgt-spd Within-limitS 
tgt-spd within-limits 

Action level: 

9. afs-state roll-armed not-vMv 
& fms-state vert-profile-intcpt progxmd 

& fms-state vert-profile-intcpt progrmd 
10. afs-state roll-armed vnav 

11. fmrr-atate vnav-spd-int oft 
12. ais-state mcp-spd outside-limitm 
13. fms-state ached-tgt-spd within-limit. 

& fms-state tgt-spd within-limits 

168 



........ 
; . . - ~ ~ ~ a n n u n c /  ‘b ,.*.. IAS  ,,i ....................... 1 2  1 3  -----*__CI .* 

ALT CAP 

Task level: 
1. afe-state athr-engd epd 
2. afe-state athr-engd not-epd 
3. afs-state pitch-ongd alt-cap 
4 .  afs-state cmd-mode fd 
or 

afs-state cmd-moda cmd 

setuplengage 
SPD mode 

engage 
SPD mode 8 ,..’ .................. push MCP 

‘la,,, SPD switch,..) ...................... 1 4 

CMD mode 

................... 16 

subtask level: 
5. afs-state athr-engd 8pd 
6. afs-state mcp-spd outside-limits 
7. afs-state athr-ongd not-spd 
8. afs-state pitch-engd alt-cap 
9. afs-state pitch--@ alt-cap 
10. afs-state cmd-mode fd 
11. afs-state &-mode cmd 

Action lowrl: 
12. afs-state athr-ongd spd 
13. afe-state mcp-spd outside-limits 
14. afs-state athr-ongd not-spd 
15. afs-state pitch-engd alt-cap 
16. afs-state cmd-mode fd 
17. afs-state cmd-mode cmd 

169 



engage 

.............. f ..... 
,'.""push LNAV *"I, 

'1. Switch ,,/' 
1 3  

........................ 

LNAV turn 

14  

arm LNAV 

18 

monitor 

Task levelt Action level: 
1. afs-state roll-engd not-lnav 13. fms-state lat-profile progrmd 

& afs-state roll-annul not-lnav 14. afs-state roll-engd lnav 
2. afs-state roll-ongd lnav 15. afs-state roll-engd lnav 
3. afs-state roll-ongd lnav 16. afs-state roll-armed not-lnav 
4.  fms-state lat-profile progrmd 17. afs-state roll-armed lnav 

& afs-state roll-ongd not-lnav 

afs-state roll-armd Inav 
or 

Subtask level : 
5. fm-state lat-profile not-progrmd 
6. fms-state lat-profile progrmd 
7. afn-state roll-engd lnav 
8. afs-stat. roll-engd lnav 
9. afs-state roll-ongd lnav 
10. afs-state roll-engd lnav 
11. afs-state roll-axmod not-lnav 
12. afs-state roll-annul lnav 

170 



.... ...................... .... 
11  1 2  

Task level: 
1. afs-state roll-engd not-Mg-eel 
2. afs-state roll-engd hdg-sel 
3. afs-state mcp-hdg within-limits 

Subtask level: 
4.  afs-state mcp-Mg outside-limits 
5. afs-state roll-engd not-Mg-sel 
6. afs-state roll-mgd hdg-eel 
7. afs-state mcp-hdg outside-limits 
8. afs-state roll-engd hdg-eel 
9. afs-state roll-engd Mg-se1 
10. afs-state roll-engd Mg-eel 

Aetion level: 
11. afs-state mcp-hdg outside-limits 
12. afs-state mcp-Mg outside-limits 
13. afs-state pitch-engd .alt-hold 
14. afs-state roll-engd hdg-sel 
15. afs-state roll-engd hdg-sel 

. 

171 



......... ..... 
1 2  

monitor m 
altitude 

HDG HOLD 

,/-*-.*. ......... ........ 
/monitor ALf ---.. ,a' push HDG '*a, 

/--v---* 
honitor ALP-.. 
! HOLD annunc) 

1 5  
-I. .*,,,,--' *. . 

;.+HOLD annunc '$,..HOLD switch.) 
---.----/<3 ....................... 1 4 

'..HOLD annuny 
1 6  -. 

Task level: 
1. afs-stat. mcp-alt outside-limits 
2. afs-stat. pitch-angd alt-hold 
3. afs-state roll-engd not-hdg-hold 
4. afs-state pitch-engd alt-hold 
5. afs-stat. roll-engd hdg-hold 

Subtask 1ev.l: 
6. afs-stat. pitch-urgd alt-hold 
7. afs-atate pitch-engd alt-hold 
8 .  afa-state pitch-engd alt-hold 
9. afs-state pitch-angd alt-hold 
10. af s-state roll-& hdg-hold 
11. afs-state roll-engd hdg-hold 

Action 1.v.1: 
12. afs-state mcp-alt outside-limits 
13. afs-state pitch-ongd alt-hold 
14. afs-state roll-engd not-hdg-hold 
15. afs-stat. pitch-agd alt-hold 
16. afs-state roll-ongd hdg-hold 0 

172 



. 

t 

....................... 1 5  

adjust MCP 

............... 
/*" dial MCP '' 
I, aitltude ,,,# 

%.. 
"I 

'%. ..................... 1 6  

f 

......... r ....... .......... L... .... .... /--z---*-- 
,I"** dial Mcp"'"., f" dial MCP *"! /monitor FL eft., '.,., altitude ,,) '*,,. I A S  ,pi '.. AD1 annund ....................... ........................ 2 0  *-- -.-----*-.= 2 1  1 9  

Tank level: 
1. afs-statr athr-mgd not-fl-ch 
2. afs-state athr-ongd fl-ch 
3. afs-state athr-engd fl-ch 

Subtask level: 
4.  afs-state mcp-alt outside-limits 
5. afs-state mcp-alt within-limits 
6. afs-state athr-engd fl-ch 
7. afs-etate mcp-alt outside-limits 
8. afs-state mcp-spd outside-limits 
9 .  afe-state athr-ongd fl-ch 

10. afs-state athr-engd fl-ch 
11. afs-state mcp-alt outside-limits 
12. afs-atate mcp-spd outside-limit. 
13. afs-etate a*-engd fl-ch 

Action level: 

14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 

afs-state mcp-alt outside-limits 
afs-state mcp-alt within-limits 
afs-state mcp-alt outside-limits 
afs-state mcp-spd outside-limits 
afs-state athr-engd fl-ch 
afs-state mcp-alt outside-limits 
afs-state mcp-spd outside-limit. 
afs-state athr-ongd fl-ch 

173 



adjust 
pitch P f 00- push yoke ---- -. ‘; 

*.. forward ..’ 
1 0  -I*-__- -0 , --- 

perform FD 
HDG SEL P f .-e- track ----I FD ---*. 

‘,command bars i 
*-. --.____-*~ 

14 

takeoff 

descent 
checklist P {read *.e- checklist’ -*-* -*.. 

items i 
1 2  **-**__-- 0 

perform FD 
HDG HOLD P /’ /--- track -*** FD ---**, 

<.command bars,’ 

1 3  
--***_C_c- , --* 

retract flaps P / 0--- move -*--- flap -*-*., 

% handle_, 
---*-_____s 

16  

command P I(‘*‘ ................. dial MCP (‘8 

‘a.... I A S  ,J’ ..................... 
1 7  

Task 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

& 
tr 

9. 
& 

level : 
acrft-state abs-alt at-or-above-1000 
acrft-state abs-alt at-or-above-1000 
current-phase cruise in-progress 
afs-state roll-engd hdg-hold 
afs-state roll-urgd hdg-sal 
ais-state cmd-mode fd 
acrft-state abs-alt at-or-above-1000 
acrft-state abs-alt at-or-above-1000 
afs-state mcp-epd outside-limits 
afs-state pitch-engd not-alt-cap 
acrft-state abs-alt at-or-above-1000 
afs-state tsp not-clb 

Action 1~1~01: 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 

18. 
& 

& 

acrft-state abs-alt at-or-above-1000 
acrft-state abs-alt at-or-above-1000 
current-phase cruise in-progress 
afs-state roll-urgd hdg-hold 
afs-stat. roll-engd Mg-sel 
afs-state cmd-mode fd 
acrft-state abs-alt at-or-above-1000 
acrft-state abs-alt at-or-atnnm-1000 
afs-state mcp-spd outside-limits 
acrft-state abs-alt at-or-above-1000 
afs-state tsp not-clb 

set climb 
thrust P t’””’push ............... TSP ‘**I 

..... switch ,,i ....................... 
1 8  

. 

174 



APPENDIX B: EMPIRICAL EVALUATION RESULTS 

. .  
i i  
v ) v )  OVERALL RESULTS Total 2 2 

Detected Actlonr (G+H+I+J+K+L) 2089 5 0  5 0  

Expected and Detected Actlonr (G+H) 1107 4 8  4 7  

Expect& ACtiOM F l a w  Late (A&) 53 0 0 

Adions Correctly Explained Via Revision (J) 595 0 0 

Actions Expected. Detected, and Conectly Explained (G - A+O) 1069 48 47 
A c I i m  Expected. Detected. and Incorrectly Exp(ained (H I B+E) 38 0 0 

Unexpected and Detected Actlonr (I+J+K+L) 982 2 3 

Actions Incorrectly Explalnad Vla Rbs ion  (K) 51 0 0 
Actions Unable to be ElcplalW Via RevWon (L) 329 1 0 
Actions Unknown to Current OFM-ACM Subphase (I) 7 1 3  

Unfulfilled Expectations (C+F) 
Unfulfilled Expe~taUons Flagged Late (C) 

317 1 0 
73 1 0 

Mlrunderrtood Actions (H+I+K+L) 425 2 3 

99 535 23 92 

1 8 3 1 4  o 20 
118 313 0 20 
0 1 0 0  
7 1 5 0 1  

81 221 23 7 2  
75 65 4 57 
1 0 0 0  
5 155 18 15 
0 1 1 0  

8 3 7 2 7  
3 5 0 0  

6 157 19 1 5  

1 2 1  2 7  2 170 183 349 3 6  341 

0 0 0 0 0 1 1 8 1 6 5 2 6  251 
0 0 0 0 0 118 165 26 214 
0 0 0 0  0 0 0 0 3 7  
0 0 0 0  0 4 1 6 1  9 

1 2 1  2 7  2 170 6 5  1 8 4 1 0  9 0  
0 9 8 0 117 36 155 10 59 
0 0 0 0  0 5 1 9 0 2 6  
I 1  12 19 2 53 24 9 0 5 
0 0 0 0  0 0 1 0  0 

3 0 0 23 0 52 132 38 14 
1 0  0 1 0 18 2 1 1 9  4 

1 1 2 1 9  2 53 2 9  29 0 6 8  

175 



APPENDIX C: GRAPHS OF DETECTED ACTIONS DATA 

Overall Results 
-_ 350 

300 

50 

n 

- 
Action Type 

Aclms Expected. 
Deleclad. and Corr.cnV 
Explainad (G = A+D) 

0 Actmns c~noctty Explainad 
VI. R o n ~  (J) 

0 Misunderstood Actmns 

W4 

176 



I Scenario 1 Results 

. 

I I Acllon TVM 

Scenario 2 Results I 
1 9 0 ,  _ _  - 

Acllon T y p  

__ - __ -_ , 
Scenario 3 Results I 

I ' I 507-r- 
4 0  -- 

I Scenario 4 Results 
I 8 0  1 I 

5 0  

'i 30 

10 

0 

-I.-- 

Action T y p  

___- ~- 

Scenario 5 Results 

. 
0 - 
P 

i L  
f 

Acllon T y p  __- 

177 



Subject 1 Results , 
I 3 5 ,  

3 0  

I 
I 

2 5  
0 

f 2 0  

f 1 5  

9 

- 
z 10 

5 

0 

I 
z 

Actlon Typ. 

3 0  

2 5  

% 1 5  

5 

0 

Subject 3 Results 
, 3 5  I 7 

~ 3 0  

a 2 5  
' 0  - 

9 2 0  

f 1 5  

' S  z 10 

5 

I 

__- ___ 

Subject 4 Results 
, 

1 35 

-ID.- .--- m-L.7 .-- 
yu 

Actlon T v w  I 

3 5  

Subject 5 Results 

2 5  
0 - 
P 2 0  - 
0 

f 1 5  

I10 
E 

5 

0 

Subject 6 Results 
7 I ~_ 30 

a 
Actlon T y p  ____ 

a 

178 



' 35 

~ 30 

, f l 5  

5 
2 10 

5 

' 0  

I 
I Actlon TYm I 

I 

7 1 

I Subject 8 Results I I 
3 5  

3 0  

5 

0 

I 

Subject 9 Results 
35 I 

30 

5 

0 

I 
AcUon Typa 

Subject 10 Results 

15 

f 5 10 
2 

5 

0 

Actlon Typa 

c 

179 



_- 

Subject llScenario 1 

. ' C  
3 

- 

f 
I 

1 

0 

'--tB-----T ."=- 

a 
Actlon Typo 

i- 

Subject 1IScenario 2 

0 

- 
0 

1 

0 

7 

d 
Aetlon NP. 

6 

$ 3  

I 
2 2  

1 

0 

Subject 1lScenario 5 

. 

. 



I 

1 5  
I I 
I 1  I 

Subject WScenrrio 1 
I 

4 

1 

I Actlon l y p  

Subject 2lScenario 2 
, 8 ,  - 

7 

1 

0 

a 
Actlon T y p  

I 
I Subject WScenerio 3 

I 7 1 1 -  
8 

t 5  

f 4  - 

1 

0 

Subject 2lScenario 4 

Actlon T y p  

Subject 2/Scenario 5 

7 

- 
0 4  

1 

0 

Actlon Typ. 

181 



Subject 3IScenrrio 1 
l e 

7 

6 e 
, 5 5  

E 

_____- Acllon Typ. 

- - - 

Subject 3IScenrrio 2 

e.-- 

- 
0 

Actlon Typ. 

Subject 3/Scenario 3 

4/1' 

i i 2  

z 4  

B z 3  
2 

1 

0 

13 

1 2  

1 1  

10 

2 
1 

0 

, Actlon Typ. , 

182 



Subject UScenario 1 

5 

- 
I 0 3  

5 

9 2  

1 

0 

a 
Action T y p  

Subject UScenario 2 

c 
AcUon Tvm 

Subject YScenario 3 
I 5 ,  

I I 

~8 

i ' 7  

~ 8 4  

5 

f 3  
2 

1 

0 

Subject 4IScenario 4 
I 

I Actlon T y p  

I 

I Subject 4IScenario 5 
1 0 ,  - 

I 

8 5  

2 4  

$ 3  

I Actlon T y p  

183 



Subject 5IScenario 2 

. s 
I 4  
1 5  

Subject SIScenario 3 I 

I 

Subject 5IScenario 4 
4 

5 
, a  5 

1 

0 

z 
Action T y p  

. 

I Aclon Typ. 
~ 

184 



i 
I Subject UScenrrio 1 i 
I 

6 

1 ~ _ _ _  Actlon Typ. 

Subject WScenario 2 
~8 1 

7 

z 4  

1 

0 

! Actlon WLU 

Subject 6lScenario 3 

a 

I {  
1 -  

P 

Subject 6lScenario 4 
4 

z 2  

0 

I Subject 61Scenario 5 

. 6  
i s  
' 2  

= 5  

i i  
9 3  

i z  
' 2  

1 

0 

185 



, Action Typa 

Subject 7lScenario 2 - 1--- 1 #-- 

AcUon Typa 

Subject 7lScenario 3 
I 6-- 

5 

t q 4  

Y 
- - 0 3  

f 
9 2  
t 

1 

0 

Subject 7lScenario 4 
7 -  I 

6 

1 

0 

Actlon Twa 

Subject 7IScenario 5 

.- b.ll 
DI-u 
1.. .4  
.--a 

--VI .--” 
cu 

Actlon Typa 

Actlon Typa 

186 



I 

8 3  

j l  

I 
I O  

1 
a 

Aetlon TvD. 

Subject BIScenario 2 

I 

8 -  

7 L- 

I 

1 Subject 8lScenario 3 
8 

7 

0 6  

3 5  - 
0 4  

z 4  

1 

1 0  

l a AeUon Typ. 

I Subject BIScenario 5 
0 

I :  

f '  
9 3  

1 2  

I 2  

' 1  

0 

I.-- -"- 
-I._ 

Action T y p  
a 

I 

187 



___-- 

Subject 9lScenario 1 
7 - 

I ..- u 
-I.- 
-b.W .--- 
m-44 

t 5  .-- 
ouw 1 :  

a 4  - 
f 3  

‘ 5  
2 2  

1 

0 

Action T y p  
L 

Subject 9IScenario 2 

a 
- Action T y p  

Subject 9IScenario 3 

1 

Subject 91Scenario 4 
5 ~ 

1 

4 

1 

0 

Subject 91Scenario 5 
_ _ _ ~  7 ~ 

. 

c 

I 

i - Action T y p  

188 



v 

Subject lO/Scenario 1 I 

I 

5 

8 3  

z n 

, =  5 2  

1 

0 

- 

Subject 10/Scenario 2 1 
8 

- 
0 

-~ 
I 

- 
Subject 10/Scenrrio 3 , 

__- - 

Subject 10IScmario 4 I 

1 
4 

0 3  

2 
0 - 
8 2  
E 

5 
1 

0 

Subject 1OlScenario 5 

AcUon TIP. 

Astlon Typa 

189 

/ 



Subjact 1 Averages 

L Aisllon Typo 

Subject 2 Averages 

0.0 f 
8.0 1 r I 

i 
a 

I Acllon Typo 

Subject 3 Avareges 

12’0 I 
: 1 0 0  
D - 

8 0  
D 

f 8 0  

I 
g 4 0  

s 
i 2 0  

0 0  

Asllon Typo 

Subject 4 Averrgas 

9.0 

Acllon Typo 

0.0 

8.0 

4 7.0  

; 5.0 

5 4.0 

8.0 
r - 
n 

2 

D 
. 3.0 
; 2.0 
< 

1.0 

Subject 5 Averages 

r 

Aollon Type 

Subjact 6 Avorrges 

7 
2 ‘11 8 4.0 5.0 

= 3.0 
L 
f 2.0 

i 
1.0 

0.0 

i f  
ik 111 i 

190 



Subject 7 Averages 

0.0 , 
8.0 

0 7.0 

6.0 

C 

0 

0 
. 5.0 
n 
f 4 0  
z . 3.0 
; 2.0 

1 0  

0.0 

i r  

.- 
M h  W h K r L l  

I Action Typo 

Subject 8 Averages 

10.0 

I 

Subject 9 Averages 

0.0 

0.0 - 

0 7.0 - 
C - T 

Action Typo 

Subject 10 Averages 

0.0 
I c 

Action Typo 

191 



Scenario 1 Averages 

I 5.0 
0 - - 

4:O - 
f 3.0 
t 
0 2 . 0  

p 1.0 

I 

0.0 

5.0 

4.0 

I 3.0 
E : 2.0 

1 .o 

0.0 

Scenario 2 Averages 

Action Tips 

1 .0  

6.0 
I 

0 - 
G 5.0 

' 4.0 

9 3.0 

.. 
k 

. E 2.0 

1 .o 
I 

0.0 

Scenario 3 Averages 

I 

Scenario 4 Averages 

0.0 
I 

8.0 

5 7 .0  

6.0 

5.0 
P 5 4.0 
2 

0 3.0 
E ; 2.0 

- 
- 
0 

1.0 

0.0 

Aelion Type 

Scenario 5 Averages 

c 
10.0 I 
9.0 

: 8.0 

2 1 .0  
- - 
5 6 .0  

f 5 .0  

4.0 

: 3.0 
I 

k p 2.0 

1.0 

0 0  

Acllon Type 

b 

e 

Aellen Type 

192 



1. AGENCY USE ONLY (Leave blank) 2.REPORT DATE 
June 1999 

7. PERFORMING 0ROANDATK)N NAME@) AND ADMIEWS) 

Ames Research Center, Moff ett Field, California 94035 

3. REPORT TYPE AND DATES COVERED 
Technical Memorandum 

8. PERFORMING OROANDATDN 
REPORT NUMBER 

4.TITLE AND SUBTITLE 

GT-CATS: Tracking Operator Activities in Complex Systems 

6. AUTHOR(8) 

Todd J. Callantine, Christine M. Mitchell, and Everett A. Palmer 

5. FUNDING NUMBERS 

NCC2-824 

0. SPONSORYQMONITORYQ AGENCY NAUE(8) AND ADDRESS(ES) 

National Aeronautics and Space Administration 

b 

10. SPONSOWt&'MON~ORING 
AGENCY REPORT NUMBER 

NASAtTM--1999-208788 

c 

12% DISlRIWIWWAVAlLABILITY STATEMENT 

Subject Category: 03-01, 63-02 
Availability: NASA CAS1 (30 1 ) 62 1-0390 

Distribution: public 

12b.DISTRIBUllON CODE 

14. SUBJECT TERMS 15.MUMBER OF PAGES 

192 
16.PRlcE CODE 

A09 

Activity tracking, Intent inferencing, Glass cockpit aircraft, Aidinghracking 
systems 

17. 8ECuRrrY CLASSIFICATION 18. SECURITY CLASIFKXTION 19.SECURTTy CLASSIFICATION 20. LIMITATION 
OF TWS PAGE OF ABSTRACT OF ABSTRACT OF REPORT 

Unlimited Unclassified Unclassified Unclassified 


